Darren W Johnson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/463072/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	C–Hâ<⁻S hydrogen bonding interactions. Chemical Society Reviews, 2022, 51, 1454-1469.	38.1	35
2	A scalable, eco-friendly ultralow-temperature approach to forming Al ₂ O ₃ water-repellent cotton coatings <i>via</i> UV photo-annealing. Chemical Communications, 2022, 58, 4536-4539.	4.1	1
3	Expanding the Scope of Pnictogenâ€Assisted Cyclophane Selfâ€Assembly. European Journal of Organic Chemistry, 2022, 2022, .	2.4	4
4	Controlling Tautomerization in Pyridineâ€Fused Phosphorusâ€Nitrogen Heterocycles. Chemistry - A European Journal, 2022, 28, .	3.3	3
5	Thionation of the 2â€Î» 5 â€Phosphaquinolinâ€2â€one Scaffold with Lawesson's Reagent. Israel Journal of Chemistry, 2021, 61, 217-221.	2.3	2
6	Deuterium equilibrium isotope effects in a supramolecular receptor for the hydrochalcogenide and halide anions. RSC Advances, 2021, 11, 26581-26585.	3.6	0
7	Main Group Supramolecular Chemistry Led to Surprising New Directions in the Self-Assembly of Organic Macrocycles, Cages, and Cyclophanes. Synlett, 2021, 32, 1702-1710.	1.8	2
8	Hydrosulfide-selective ChemFETs for aqueous H2S/HSâ^' measurement. Sensing and Bio-Sensing Research, 2021, 31, 100394.	4.2	6
9	Investigation of the physical, optical, and chemical properties of phase segregated AlCoOx thin films from a novel hexol-type cluster. Dalton Transactions, 2021, 50, 3247-3252.	3.3	0
10	Amplification of the Quantum Yields of 2-λ5-Phosphaquinolin-2-ones through Phosphorus Center Modification. Journal of Organic Chemistry, 2020, 85, 85-91.	3.2	11
11	A highly fluorescent PN-heterocycle-fused pyrene derivative with strong self-dimerisation through hydrogen bonding. Supramolecular Chemistry, 2020, 32, 49-55.	1.2	4
12	"Design of Experiments―as a Method to Optimize Dynamic Disulfide Assemblies: Cages and Functionalizable Macrocycles. Angewandte Chemie, 2020, 132, 1512-1516.	2.0	5
13	"Design of Experiments―as a Method to Optimize Dynamic Disulfide Assemblies: Cages and Functionalizable Macrocycles. Angewandte Chemie - International Edition, 2020, 59, 1496-1500.	13.8	14
14	Hydrosulfide Oxidation at a Molybdenum Tetrasulfido Complex. Inorganic Chemistry, 2020, 59, 15574-15578.	4.0	10
15	An Efficient Route to Symmetrical and Unsymmetrical Disulfide, Thioether, and Hydrocarbon Cyclophanes. European Journal of Organic Chemistry, 2020, 2020, 6795-6800.	2.4	6
16	Bumpy Roads Lead to Beautiful Places: The Twists and Turns in Developing a New Class of PN-Heterocycles. Synlett, 2020, 31, 1862-1877.	1.8	5
17	Solvent-Dependent Linear Free-Energy Relationship in a Flexible Host–Guest System. Journal of Organic Chemistry, 2020, 85, 12367-12373.	3.2	17
18	Dynamic Covalent Chemistry as a Facile Route to Unusual Mainâ€Group Thiolate Assemblies and Disulfide Hoops and Cages. ChemPlusChem, 2020, 85, 1270-1282.	2.8	18

#	Article	IF	CITATIONS
19	Evolution of Atomic-Level Structure in Sub-10 Nanometer Iron Oxide Nanocrystals: Influence on Cation Occupancy and Growth Rates. ACS Nano, 2020, 14, 5480-5490.	14.6	22
20	Tuning Supramolecular Selectivity for Hydrosulfide: Linear Free Energy Relationships Reveal Preferential C–H Hydrogen Bond Interactions. Journal of the American Chemical Society, 2020, 142, 8243-8251.	13.7	27
21	PN-Containing Pyrene Derivatives: Synthesis, Structure, and Photophysical Properties. Organic Letters, 2019, 21, 6427-6431.	4.6	20
22	Selfâ€Assembly of a Trithioorthoformate apped Cyclophane and Its Endohedral Inclusion of a Methine Group. Chemistry - A European Journal, 2019, 25, 13290-13293.	3.3	7
23	Self-sorting in dynamic disulfide assembly: new biphenyl-bridged "nanohoops―and unsymmetrical cyclophanes. Chemical Communications, 2019, 55, 11840-11843.	4.1	7
24	Expanding reversible chalcogenide binding: supramolecular receptors for the hydroselenide (HSe ^{â^'}) anion. Chemical Science, 2019, 10, 67-72.	7.4	20
25	Exploiting the Hydrogen Bond Donor/Acceptor Properties of PNâ€Heterocycles: Selective Anion Receptors for Hydrogen Sulfate. Angewandte Chemie - International Edition, 2019, 58, 3934-3938.	13.8	25
26	Methanesulfonyl-polarized halogen bonding enables strong halide recognition in an arylethynyl anion receptor. Chemical Communications, 2019, 55, 1919-1922.	4.1	18
27	Organotin Carboxylate Reagents for Nanopatterning: Chemical Transformations during Direct-Write Electron Beam Processes. Chemistry of Materials, 2019, 31, 4840-4850.	6.7	20
28	Naphtho[2,1- <i>e</i>]-1,2-azaphosphorine 2-Oxide Derivatives: Synthesis, Optoelectronic Properties, and Self-Dimerization Phenomena. Journal of Organic Chemistry, 2019, 84, 8131-8139.	3.2	13
29	Synthesis, photophysical properties, and self-dimerization studies of 2-λ ⁵ -phosphaquinolin-2-ones. Organic Chemistry Frontiers, 2019, 6, 1257-1265.	4.5	10
30	Influence of Nanocrystal Size on the Optoelectronic Properties of Thin, Solution-Cast Sn-Doped In ₂ O ₃ Films. Chemistry of Materials, 2019, 31, 3370-3380.	6.7	35
31	The road to aryl CHâ√anion binding was paved with good intentions: fundamental studies, host design, and historical perspectives in CH hydrogen bonding. Chemical Communications, 2019, 55, 5195-5206.	4.1	47
32	Exploiting the Hydrogen Bond Donor/Acceptor Properties of PNâ€Heterocycles: Selective Anion Receptors for Hydrogen Sulfate. Angewandte Chemie, 2019, 131, 3974-3978.	2.0	6
33	Unique chemistries of metal-nitrate precursors to form metal-oxide thin films from solution: materials for electronic and energy applications. Journal of Materials Chemistry A, 2019, 7, 24124-24149.	10.3	78
34	Convergent Ditopic Receptors Enhance Anion Binding upon Alkali Metal Complexation for Catalyzing the Ritter Reaction. Organic Letters, 2019, 21, 652-655.	4.6	23
35	Coupling Metaloid-Directed Self-Assembly and Dynamic Covalent Systems as a Route to Large Organic Cages and Cyclophanes. Inorganic Chemistry, 2018, 57, 3486-3496.	4.0	20
36	Copper(<scp>ii</scp>) serves as an efficient additive for metal-directed self-assembly of over 20 thiacyclophanes. Chemical Communications, 2018, 54, 13419-13422.	4.1	9

#	Article	IF	CITATIONS
37	Conformationally flexible arylethynyl bis-urea receptors bind disparate oxoanions with similar, high affinities. Chemical Communications, 2018, 54, 13208-13211.	4.1	8
38	Evaluation of Thermal and Radiation Induced Chemistries of Metal Oxo–Hydroxo Clusters for Next-Generation Nanoscale Inorganic Resists. ACS Applied Nano Materials, 2018, 1, 4548-4556.	5.0	15
39	Computational and Experimental Evidence of Emergent Equilibrium Isotope Effects in Anion Receptor Complexes. Journal of the American Chemical Society, 2017, 139, 3962-3965.	13.7	13
40	Do CH–Anion and Anion–π Interactions Alter the Mechanism of 2:1 Host–Guest Complexation in Arylethynyl Monourea Anion Receptors?. Chemistry - A European Journal, 2017, 23, 4051-4054.	3.3	10
41	Synthesis of an Aluminum Hydroxide Octamer through a Simple Dissolution Method. Angewandte Chemie, 2017, 129, 10295-10298.	2.0	10
42	Synthesis of an Aluminum Hydroxide Octamer through a Simple Dissolution Method. Angewandte Chemie - International Edition, 2017, 56, 10161-10164.	13.8	24
43	Alkyltin Keggin Clusters Templated by Sodium. Angewandte Chemie - International Edition, 2017, 56, 10140-10144.	13.8	41
44	Synthesis and Properties of Naphtho[2,3- <i>e</i>]-1,2-azaphosphorine 2-Oxides: PN-Anthracene Analogues. Organometallics, 2017, 36, 2491-2493.	2.3	15
45	Stable Heterometallic Cluster Ions based on Werner's Hexol. Angewandte Chemie - International Edition, 2017, 56, 8776-8779.	13.8	2
46	Same Precursor, Two Different Products: Comparing the Structural Evolution of In–Ga–O "Gel-Derived―Powders and Solution-Cast Films Using Pair Distribution Function Analysis. Journal of the American Chemical Society, 2017, 139, 5607-5613.	13.7	13
47	Ln polyoxocations: yttrium oxide solution speciation & solution deposited thin films. Dalton Transactions, 2017, 46, 947-955.	3.3	15
48	Role of Combustion Chemistry in Low-Temperature Deposition of Metal Oxide Thin Films from Solution. Chemistry of Materials, 2017, 29, 9480-9488.	6.7	30
49	Minerals to Materials: Bulk Synthesis of Aqueous Aluminum Clusters and Their Use as Precursors for Metal Oxide Thin Films. Chemistry of Materials, 2017, 29, 7760-7765.	6.7	15
50	Radial Dopant Placement for Tuning Plasmonic Properties in Metal Oxide Nanocrystals. ACS Nano, 2017, 11, 7719-7728.	14.6	69
51	Implications of Crystal Structure on Organotin Carboxylate Photoresistsâ€. Crystal Research and Technology, 2017, 52, 1700081.	1.3	14
52	Alkyltin Keggin Clusters Templated by Sodium. Angewandte Chemie, 2017, 129, 10274-10278.	2.0	9
53	Stable Heterometallic Cluster Ions based on Werner's Hexol. Angewandte Chemie, 2017, 129, 8902-8905.	2.0	1
54	Sub-30 keV patterning of HafSOx resist: Effects of voltage on resolution, contrast, and sensitivity. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2016, 34, 041607.	1.2	4

#	Article	IF	CITATIONS
55	A Synthetic Supramolecular Receptor for the Hydrosulfide Anion. Angewandte Chemie - International Edition, 2016, 55, 11480-11484.	13.8	40
56	Proton-Exchange Rates on Hydroxide Bridges of Mineral-Like Metal-Hydroxide Clusters. ChemistrySelect, 2016, 1, 1118-1122.	1.5	1
57	A Synthetic Supramolecular Receptor for the Hydrosulfide Anion. Angewandte Chemie, 2016, 128, 11652-11656.	2.0	9
58	A facile route to old and new cyclophanes via self-assembly and capture. Nature Communications, 2016, 7, 11052.	12.8	43
59	Synthetic routes to a nanoscale inorganic cluster [Ga13(μ3-OH)6(μ2-OH)18(H2O)](NO3)15 evaluated by solid-state 71Ga NMR. Journal of Solid State Chemistry, 2016, 242, 193-198.	2.9	7
60	Attraction by repulsion: compounds with like charges undergo self-assembly in water that improves in high salt and persists in real biological fluids. Chemical Communications, 2016, 52, 2768-2771.	4.1	15
61	Non-covalent functionalization of high-surface area nanomaterials: a new class of sorbent materials. Environmental Science: Nano, 2016, 3, 138-145.	4.3	15
62	Anion-directed self-assembly of a 2,6-bis(2-anilinoethynyl)pyridine bis(amide) scaffold. Supramolecular Chemistry, 2016, 28, 37-44.	1.2	2
63	Non-uniform Composition Profiles in Inorganic Thin Films from Aqueous Solutions. ACS Applied Materials & Interfaces, 2016, 8, 667-672.	8.0	18
64	Harnessing solid-state packing for selective detection of chloride in a macrocyclic anionophore. Chemical Communications, 2016, 52, 9506-9509.	4.1	11
65	Facile Synthesis and Properties of 2â€ĥ» ⁵ â€Phosphaquinolines and 2â€ĥ» ⁵ â€Phosphaquinolinâ€2â€ones. Angewandte Chemie - International Edition, 2015, 54, 13318-	13322.	36
66	Solid-State Examination of Conformationally Diverse Sulfonamide Receptors Based on Bis(2-anilinoethynyl)pyridine, -Bipyridine, and -Thiophene. Crystal Growth and Design, 2015, 15, 1502-1511.	3.0	6
67	Ion and Molecular Recognition Using Aryl–Ethynyl Scaffolding. Chemistry - an Asian Journal, 2015, 10, 522-535.	3.3	21
68	"Off-on―aggregation-based fluorescent sensor for the detection of chloride in water. Organic and Biomolecular Chemistry, 2015, 13, 4266-4270.	2.8	34
69	Heat capacities and thermodynamics of formation of flat-Al13 nitrate – [Al13(OH)24(H2O)24](NO3)15·11H2O. Journal of Chemical Thermodynamics, 2015, 90, 224-231.	2.0	2
70	An overview of selected current approaches to the characterization of aqueous inorganic clusters. Dalton Transactions, 2015, 44, 16982-17006.	3.3	41
71	Solution structural characterization of an array of nanoscale aqueous inorganic Ga13â^'xInx (0 ≤ â‰)¤Tj ETQc	1_1_0.784 7.4	314 rgBT (C
79	Synthesis and Solid-State Structural Characterization of a Series of Aqueous Heterometallic	4.0	0

72 Tridecameric Group 13 Clusters. Inorganic Chemistry, 2015, 54, 3913-3920.

4.0 9

#	Article	IF	CITATIONS
73	Self-assembled trinuclear arsenic and antimony macrobicycles. Chemical Science, 2015, 6, 2444-2448.	7.4	4
74	Structural study by solid-state ⁷¹ Ga NMR of thin film transistor precursors. Dalton Transactions, 2015, 44, 17652-17659.	3.3	7
75	Substituent Effects in CH Hydrogen Bond Interactions: Linear Free Energy Relationships and Influence of Anions. Journal of the American Chemical Society, 2015, 137, 14959-14967.	13.7	63
76	Transmetalation of self-assembled, supramolecular complexes. Chemical Society Reviews, 2014, 43, 1825-1834.	38.1	77
77	Synthesis of a Self-Assembled Hg(II)-Dithiocarbamate Metallomacrocycle. Crystal Growth and Design, 2014, 14, 2087-2091.	3.0	13
78	Mentoring Graduate Students in Research and Teaching by Utilizing Research as a Template. Journal of Chemical Education, 2014, 91, 200-205.	2.3	8
79	Synthesis and solid-state structures of a macrocyclic receptor based on the 2,6-bis(2-anilinoethynyl)pyridine scaffold. CrystEngComm, 2014, 16, 3703.	2.6	6
80	Intramolecular N–Hâ< [–] Cl hydrogen bonds in the outer coordination sphere of a bipyridyl bisurea-based ligand stabilize a tetrahedral FeLCl ₂ complex. Chemical Communications, 2014, 50, 7173-7175.	4.1	16
81	Exploring anion-induced conformational flexibility and molecular switching in a series of heteroaryl-urea receptors. Chemical Science, 2014, 5, 2899-2905.	7.4	26
82	Electrochemical synthesis of flat-[Ga _{13â^'x} In _x (μ ₃ -OH) ₆ (μ-OH) ₁₈ (H <sub clusters as aqueous precursors for solution-processed semiconductors. Journal of Materials Chemistry C, 2014, 2, 8492-8496.</sub 	∙2C)) ₂₄
83	Chloride-catalyzed, multicomponent self-assembly of arsenic thiolates. Chemical Communications, 2014, 50, 73-75.	4.1	11
84	Chemical and Structural Investigation of High-Resolution Patterning with HafSOx. ACS Applied Materials & amp; Interfaces, 2014, 6, 2917-2921.	8.0	72
85	Solid-State ⁶⁹ Ga and ⁷¹ Ga NMR Study of the Nanoscale Inorganic Cluster [Ga ₁₃ (μ ₃ -OH) ₆ (μ ₂ -OH) ₁₈ (H ₂ Chemistry of Materials, 2014, 26, 4978-4983.	O) &<i>s</i>ub >2	44 6 ub>](NC
86	Transmetalation of Aqueous Inorganic Clusters: A Useful Route to the Synthesis of Heterometallic Aluminum and Indium Hydroxo—Aquo Clusters. Inorganic Chemistry, 2014, 53, 7101-7105.	4.0	22
87	Aryl C–H⋯Clâ^' hydrogen bonding in a fluorescent anion sensor. Chemical Communications, 2013, 49, 7240.	4.1	52
88	Elucidating Inorganic Nanoscale Species in Solution: Complementary and Corroborative Approaches. ChemPhysChem, 2013, 14, 2655-2661.	2.1	15
89	Aqueous Solution Processing of F-Doped SnO ₂ Transparent Conducting Oxide Films Using a Reactive Tin(II) Hydroxide Nitrate Nanoscale Cluster. Chemistry of Materials, 2013, 25, 4080-4087.	6.7	50
90	An Anionâ€Modulated Threeâ€Way Supramolecular Switch that Selectively Binds Dihydrogen Phosphate, H ₂ PO ₄ ^{â^²} . Angewandte Chemie - International Edition, 2013, 52, 10270-10274.	13.8	59

#	Article	IF	CITATIONS
91	Selective Nitrate Binding in Competitive Hydrogen Bonding Solvents: Do Anion–í€ Interactions Facilitate Nitrate Selectivity?. Angewandte Chemie - International Edition, 2013, 52, 10275-10280.	13.8	75
92	Lithium-selective phosphine oxide-based ditopic receptors show enhanced halide binding upon alkali metal ion coordination. Chemical Science, 2013, 4, 585-590.	7.4	19
93	Ionâ^ï€ Interactions in Ligand Design for Anions and Main Group Cations. Accounts of Chemical Research, 2013, 46, 955-966.	15.6	128
94	Pnictogen-directed synthesis of discrete disulfide macrocycles. Chemical Communications, 2013, 49, 6599.	4.1	15
95	Identifying Nanoscale M ₁₃ Clusters in the Solid State and Aqueous Solution: Vibrational Spectroscopy and Theoretical Studies. Inorganic Chemistry, 2013, 52, 6187-6192.	4.0	13
96	ConfChem Conference on Educating the Next Generation: Green and Sustainable Chemistry—Chemistry of Sustainability: A General Education Science Course Enhancing Students, Faculty and Institutional Programming. Journal of Chemical Education, 2013, 90, 515-516.	2.3	6
97	Selective Nitrate Binding in Competitive Hydrogen Bonding Solvents: Do Anion–π Interactions Facilitate Nitrate Selectivity?. Angewandte Chemie, 2013, 125, 10465-10470.	2.0	20
98	An Anionâ€Modulated Threeâ€Way Supramolecular Switch that Selectively Binds Dihydrogen Phosphate, H ₂ PO ₄ ^{â^'} . Angewandte Chemie, 2013, 125, 10460-10464.	2.0	25
99	Single Nanoscale Cluster Species Revealed by ¹ Hâ€NMR Diffusionâ€Ordered Spectroscopy and Smallâ€Angle Xâ€ray Scattering. Angewandte Chemie - International Edition, 2012, 51, 10992-10996.	13.8	26
100	Oligomeric group 13 hydroxide compounds—a rare but varied class of molecules. Chemical Society Reviews, 2012, 41, 1019-1030.	38.1	72
101	Synthesis and optoelectronic properties of 2,6-bis(2-anilinoethynyl)pyridine scaffolds. Chemical Science, 2012, 3, 1105.	7.4	29
102	Counterion and Steric Effects in Self-Assembled HgX ₂ –Thioether Coordination Polymers. Crystal Growth and Design, 2012, 12, 1579-1585.	3.0	20
103	Design, synthesis and characterization of self-assembled As2L3 and Sb2L3 cryptands. Dalton Transactions, 2011, 40, 12125.	3.3	22
104	Anion-dependent fluorescence in bis(anilinoethynyl)pyridine derivatives: switchable ON–OFF <i>and</i> OFF–ON responses. Chemical Communications, 2011, 47, 5539-5541.	4.1	41
105	Synthesis of the Hydroxide Cluster [Al ₁₃ (μ ₃ -OH) ₆ (μ-OH) ₁₈ (H ₂ O) _{24from an Aqueous Solution. Inorganic Chemistry, 2011, 50, 4683-4685.}	ıb x].o sup>	1567
106	Molecular Self-Assembly: Solvent Guests Tune the Conformation of a Series of 2,6-Bis(2-anilinoethynyl)pyridine-Based Ureas. Crystal Growth and Design, 2011, 11, 5144-5152.	3.0	19
107	Lithium cation enhances anion binding in a tripodal phosphine oxide-based ditopic receptor. Chemical Communications, 2011, 47, 7653.	4.1	11
108	Design Considerations for the Group 15 Elements: The Pnictogen···π Interaction As a Complementary Component in Supramolecular Assembly Design. Crystal Growth and Design, 2010, 10, 3531-3536.	3.0	42

#	Article	IF	CITATIONS
109	Supramolecular "Transmetalation―Leads to an Unusual Selfâ€Assembled P ₂ L ₃ Cryptand. Angewandte Chemie - International Edition, 2010, 49, 1248-1251.	13.8	56
110	A Surprising "Folded-In―Conformation of a Self-Assembled Arsenic-Thiolate Macrocycle. Crystal Growth and Design, 2010, 10, 1471-1473.	3.0	14
111	Self-Assembled E ₂ L ₃ Cryptands (E = P, As, Sb, Bi): Transmetalation, Homo- and Heterometallic Assemblies, and Conformational Isomerism. Inorganic Chemistry, 2010, 49, 9985-9992.	4.0	32
112	Arylethynyl receptors for neutral molecules and anions: emerging applications in cellular imaging. Chemical Society Reviews, 2010, 39, 3875.	38.1	77
113	Three's company: co-crystallization of a self-assembled S4 metallacyclophane with two diastereomeric metallacycle intermediates. Chemical Communications, 2010, 46, 3505.	4.1	24
114	Supramolecular Organization Using Multiple Secondary Bonding Interactions. Crystal Growth and Design, 2009, 9, 3011-3013.	3.0	15
115	Synthesis and Crystallization of Infinite Indium and Gallium Acetate 1D Chain Structures and Concomitant Ethyl Acetate Hydrolysis. Inorganic Chemistry, 2009, 48, 3505-3507.	4.0	21
116	Anion Binding Induces Helicity in a Hydrogen-Bonding Receptor: Crystal Structure of a 2,6-Bis(anilinoethynyl)pyridinium Chloride. Crystal Growth and Design, 2009, 9, 4247-4249.	3.0	29
117	Observation of reaction intermediates and kinetic mistakes in a remarkably slow self-assembly reaction. Chemical Communications, 2009, , 5606.	4.1	46
118	Experimental evidence for interactions between anions and electron-deficient aromatic rings. Chemical Communications, 2009, , 3143.	4.1	137
119	Protonation activates anion binding and alters binding selectivity in new inherently fluorescent 2,6-bis(2-anilinoethynyl)pyridine bisureas. Chemical Communications, 2009, , 2520.	4.1	65
120	Water and Hydrogen Halides Serve the Same Structural Role in a Series of 2+2 Hydrogen-Bonded Dimers Based on 2,6-Bis(2-anilinoethynyl)pyridine Sulfonamide Receptors. Angewandte Chemie - International Edition, 2008, 47, 117-120.	13.8	43
121	Synthesis of Heterometallic Groupâ€13 Nanoclusters and Inks for Oxide Thinâ€Film Transistors. Angewandte Chemie - International Edition, 2008, 47, 9484-9486.	13.8	66
122	Host–guest interactions in a series of self-assembled As2L2Cl2 macrocycles. Dalton Transactions, 2008, , 3447.	3.3	19
123	Multiple weak supramolecular interactions stabilize a surprisingly twisted As2L3 assembly. Chemical Communications, 2008, , 3936.	4.1	21
124	New functional materials for heavy metal sorption: "Supramolecular―attachment of thiols to mesoporous silica substrates. Chemical Communications, 2008, , 5583.	4.1	32
125	Solution Phase Measurement of Both Weak If and Câ [°] 'H···X ^{â[°]'} Hydrogen Bonding Interactions in Synthetic Anion Receptors. Journal of the American Chemical Society, 2008, 130, 10895-10897.	13.7	168
	Facile Synthesis of the Tridecameric Al ₁₃ Nanocluster		

126 Al₁₃(1¼₃OH)₆(1¼₂OH)₁₈(1¼₂O)<sub>0₂₄(NO<sub)</p>
Inorganic Chemistry, 2008, 47, 1267-1269.

#	Article	IF	CITATIONS
127	SUPRAMOLECULAR ARSENIC COORDINATION CHEMISTRY. Comments on Inorganic Chemistry, 2007, 28, 97-122.	5.2	30
128	Diastereoselectivity in the Self-Assembly of As2L2Cl2 Macrocycles is Directed by the Asâ~Ï€ Interaction. Inorganic Chemistry, 2007, 46, 9278-9284.	4.0	29
129	Structural Criteria for the Design of Anion Receptors:  The Interaction of Halides with Electron-Deficient Arenes. Journal of the American Chemical Society, 2007, 129, 48-58.	13.7	301
130	Main group supramolecular chemistry. Chemical Society Reviews, 2007, 36, 1441.	38.1	156
131	Anion–π interaction augments halide binding in solution. Chemical Communications, 2006, , 506-508.	4.1	178
132	Self-assembled antimony-thiolate Sb2L3and Sb2L2Cl2complexes. Main Group Chemistry, 2006, 5, 51-59.	0.8	19
133	Secondary Bonding Interactions Observed in Two Arsenic Thiolate Complexes. Inorganic Chemistry, 2005, 44, 9634-9636.	4.0	22
134	A Simple Organic Reaction Mediates the Crystallization of the Inorganic Nanocluster [Ga13(μ3-OH)6(μ2-OH)18(H2O)24](NO3)15. Journal of the American Chemical Society, 2005, 127, 3242-324	-3 ^{13.7}	36
135	Synthesis and Characterization of Two Isomeric, Self-Assembled Arsenicâ^'Thiolate Macrocycles. Inorganic Chemistry, 2005, 44, 9247-9252.	4.0	53
136	Mainâ€Group Supramolecular Coordination Chemistry. , 2004, , 1-17.		0
137	Arsenic-? Interactions Stabilize a Self-Assembled As2L3 Supramolecular Complex. Angewandte Chemie - International Edition, 2004, 43, 5831-5833.	13.8	95
138	Supramolecular Chirality: A Reporter of Structural Memory. Angewandte Chemie, 2003, 115, 689-692.	2.0	44
139	Supramolecular Chirality: A Reporter of Structural Memory. Angewandte Chemie - International Edition, 2003, 42, 665-668.	13.8	144
140	Imposition of Chirality in a Dinuclear Triple-Stranded Helicate by Ion Pair Formation1. Inorganic Chemistry, 2001, 40, 2216-2217.	4.0	58
141	The Self-Assembly of a [Ga4L6]12-Tetrahedral ClusterThermodynamicallyDriven by Hostâ^'Guest Interactionsâ€. Inorganic Chemistry, 2001, 40, 5157-5161.	4.0	78
142	Rational Design and Assembly of M2Mâ€~3L6Supramolecular Clusters withC3hSymmetry by Exploiting Incommensurate Symmetry Numbers§. Journal of the American Chemical Society, 2001, 123, 2752-2763.	13.7	104
143	A Silver-Linked Supramolecular Cluster Encapsulating a Cesium Cationâ€. Inorganic Chemistry, 2001, 40, 4504-4506.	4.0	46
144	The Role of Guest Molecules in the Self-assembly of Metal—ligand Clusters. Supramolecular Chemistry, 2001, 13, 639-659.	1.2	84

#	Article	IF	CITATIONS
145	Exploiting Incommensurate Symmetry Numbers: Rational Design and Assembly of M2M3′L6 Supramolecular Clusters with C3h Symmetry. Angewandte Chemie - International Edition, 1999, 38, 1303-1307.	13.8	94
146	Triple Helicate—Tetrahedral Cluster Interconversion Controlled by Host-Guest Interactions. Angewandte Chemie - International Edition, 1999, 38, 1587-1592.	13.8	107
147	Self-Assembly of a Three-Dimensional [Ga6(L2)6] Metal-Ligand "Cylinder― Angewandte Chemie - International Edition, 1999, 38, 2882-2885.	13.8	88