

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4630268/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Occurrence, sources and fate of pharmaceuticals and personal care products in the groundwater: A review. Emerging Contaminants, 2015, 1, 14-24.	4.9	520
2	Occurrence and removal of pharmaceuticals, caffeine and DEET in wastewater treatment plants of Beijing, China. Water Research, 2010, 44, 417-426.	11.3	384
3	Seasonal Variation in the Occurrence and Removal of Pharmaceuticals and Personal Care Products in Different Biological Wastewater Treatment Processes. Environmental Science & Technology, 2011, 45, 3341-3348.	10.0	323
4	Municipal Solid Waste Landfills: An Underestimated Source of Pharmaceutical and Personal Care Products in the Water Environment. Environmental Science & Technology, 2020, 54, 9757-9768.	10.0	157
5	Degradation of trichloroethylene in aqueous solution by persulfate activated with citric acid chelated ferrous ion. Chemical Engineering Journal, 2014, 255, 585-592.	12.7	151
6	Strong enhancement of trichloroethylene degradation in ferrous ion activated persulfate system by promoting ferric and ferrous ion cycles with hydroxylamine. Separation and Purification Technology, 2015, 147, 186-193.	7.9	131
7	Benzene depletion by Fe2+-catalyzed sodium percarbonate in aqueous solution. Chemical Engineering Journal, 2015, 267, 25-33.	12.7	124
8	Degradation of trichloroethylene in aqueous solution by calcium peroxide activated with ferrous ion. Journal of Hazardous Materials, 2015, 284, 253-260.	12.4	116
9	Degradation of phenanthrene in aqueous solution by a persulfate/percarbonate system activated with CA chelated-Fe(II). Chemical Engineering Journal, 2018, 333, 122-131.	12.7	111
10	Pharmaceuticals and personal care products in the leachates from a typical landfill reservoir of municipal solid waste in Shanghai, China: Occurrence and removal by a full-scale membrane bioreactor. Journal of Hazardous Materials, 2017, 323, 99-108.	12.4	109
11	Degradation of trichloroethylene in aqueous solution by rGO supported nZVI catalyst under several oxic environments. Journal of Hazardous Materials, 2018, 349, 35-44.	12.4	109
12	Degradation of phenanthrene in sulfate radical based oxidative environment by nZVI-PDA functionalized rGO catalyst. Chemical Engineering Journal, 2018, 354, 541-552.	12.7	109
13	Occurrence and distribution of microplastics in domestic, industrial, agricultural and aquacultural wastewater sources: A case study in Changzhou, China. Water Research, 2020, 182, 115956.	11.3	108
14	Rapid removal of bisphenol A on highly ordered mesoporous carbon. Journal of Environmental Sciences, 2011, 23, 177-182.	6.1	104
15	Simultaneous removal of benzene, toluene, ethylbenzene and xylene (BTEX) by CaO2 based Fenton system: Enhanced degradation by chelating agents. Chemical Engineering Journal, 2018, 331, 255-264.	12.7	97
16	Identification of priority pharmaceuticals in the water environment of China. Chemosphere, 2012, 89, 280-286.	8.2	94
17	Benzene oxidation by Fe(III)-activated percarbonate: matrix-constituent effects and degradation pathways. Chemical Engineering Journal, 2017, 309, 22-29.	12.7	91
18	Enhanced degradation of benzene in aqueous solution by sodium percarbonate activated with chelated-Fe(II). Chemical Engineering Journal, 2016, 285, 180-188.	12.7	82

#	Article	IF	CITATIONS
19	Degradation of carbon tetrachloride in aqueous solution in the thermally activated persulfate system. Journal of Hazardous Materials, 2015, 286, 7-14.	12.4	77
20	Mechanism of PCE oxidation by percarbonate in a chelated Fe(II)-based catalyzed system. Chemical Engineering Journal, 2015, 275, 53-62.	12.7	74
21	Removal and fate of polycyclic aromatic hydrocarbons in a hybrid anaerobic–anoxic–oxic process for highly toxic coke wastewater treatment. Science of the Total Environment, 2018, 635, 716-724.	8.0	72
22	Occurrence, source and ecotoxicological risk assessment of pesticides in surface water of Wujin District (northwest of Taihu Lake), China. Environmental Pollution, 2020, 265, 114953.	7.5	70
23	Perchloroethylene (PCE) oxidation by percarbonate in Fe2+-catalyzed aqueous solution: PCE performance and its removal mechanism. Chemosphere, 2015, 119, 1120-1125.	8.2	69
24	Insight on the generation of reactive oxygen species in the CaO2/Fe(II) Fenton system and the hydroxyl radical advancing strategy. Chemical Engineering Journal, 2018, 353, 657-665.	12.7	67
25	Degradation of ethylbenzene in aqueous solution by sodium percarbonate activated with EDDS–Fe(III) complex. Chemical Engineering Journal, 2017, 309, 80-88.	12.7	62
26	Pharmaceuticals and personal care products in the urban river across the megacity Shanghai: Occurrence, source apportionment and a snapshot of influence of rainfall. Journal of Hazardous Materials, 2018, 359, 429-436.	12.4	62
27	Enhancement effects of reducing agents on the degradation of tetrachloroethene in the Fe(II)/Fe(III) catalyzed percarbonate system. Journal of Hazardous Materials, 2015, 300, 530-537.	12.4	61
28	The destruction of benzene by calcium peroxide activated with Fe(II) in water. Chemical Engineering Journal, 2016, 302, 187-193.	12.7	61
29	Recent advances in pharmaceuticals and personal care products in the surface water and sediments in China. Frontiers of Environmental Science and Engineering, 2016, 10, 1.	6.0	61
30	Application of calcium peroxide activated with Fe(II)-EDDS complex in trichloroethylene degradation. Chemosphere, 2016, 160, 1-6.	8.2	60
31	Comparative studies of H2O2/Fe(II)/formic acid, sodium percarbonate/Fe(II)/formic acid and calcium peroxide/Fe(II)/formic acid processes for degradation performance of carbon tetrachloride. Chemical Engineering Journal, 2018, 344, 453-461.	12.7	60
32	Identification of indicator PPCPs in landfill leachates and livestock wastewaters using multi-residue analysis of 70 PPCPs: Analytical method development and application in Yangtze River Delta, China. Science of the Total Environment, 2021, 753, 141653.	8.0	60
33	How to detect small microplastics (20–100Âî¼m) in freshwater, municipal wastewaters and landfill leachates? A trial from sampling to identification. Science of the Total Environment, 2020, 733, 139218.	8.0	57
34	Identification of New Oxidation Products of Bezafibrate for Better Understanding of Its Toxicity Evolution and Oxidation Mechanisms during Ozonation. Environmental Science & Technology, 2017, 51, 2262-2270.	10.0	53
35	Application of ascorbic acid to enhance trichloroethene degradation by Fe(III)-activated calcium peroxide. Chemical Engineering Journal, 2017, 325, 188-198.	12.7	53
36	Elucidation of the oxidation mechanisms and pathways of sulfamethoxazole degradation under Fe(II) activated percarbonate treatment. Science of the Total Environment, 2018, 640-641, 973-980.	8.0	52

#	Article	IF	CITATIONS
37	Photodegradation performance of 1,1,1-trichloroethane in aqueous solution: In the presence and absence of persulfate. Chemical Engineering Journal, 2013, 215-216, 29-35.	12.7	50
38	Occurrence and removal of six pharmaceuticals and personal care products in a wastewater treatment plant employing anaerobic/anoxic/aerobic and UV processes in Shanghai, China. Environmental Science and Pollution Research, 2014, 21, 4276-4285.	5.3	50
39	Efficient elimination of sulfonamides by an anaerobic/anoxic/oxic-membrane bioreactor process: Performance and influence of redox condition. Science of the Total Environment, 2018, 633, 668-676.	8.0	47
40	Role of Reactive Oxygen Species for 1,1,1-Trichloroethane Degradation in a Thermally Activated Persulfate System. Industrial & Engineering Chemistry Research, 2014, 53, 1056-1063.	3.7	46
41	Carbon dioxide radical anion-based UV/S2O82â [~] /HCOOH reductive process for carbon tetrachloride degradation in aqueous solution. Separation and Purification Technology, 2017, 172, 211-216.	7.9	46
42	Naphthalene degradation in aqueous solution by Fe(II) activated persulfate coupled with citric acid. Separation and Purification Technology, 2021, 264, 118441.	7.9	46
43	Enhanced degradation of trichloroethene by calcium peroxide activated with Fe(III) in the presence of citric acid. Frontiers of Environmental Science and Engineering, 2016, 10, 502-512.	6.0	45
44	Utilization of formic acid in nanoscale zero valent iron-catalyzed Fenton system for carbon tetrachloride degradation. Chemical Engineering Journal, 2020, 380, 122537.	12.7	45
45	Insight into CaO2-based Fenton and Fenton-like systems: Strategy for CaO2-based oxidation of organic contaminants. Chemical Engineering Journal, 2019, 361, 919-928.	12.7	44
46	Trichloroethene degradation by nanoscale CaO2 activated with Fe(II)/FeS: The role of FeS and the synergistic activation mechanism of Fe(II)/FeS. Chemical Engineering Journal, 2020, 394, 124830.	12.7	44
47	Enhancement effects of chelating agents on the degradation of tetrachloroethene in Fe(III) catalyzed percarbonate system. Chemical Engineering Journal, 2015, 281, 286-294.	12.7	43
48	Efficient removal of trichloroethylene in surfactant amended solution by nano Fe0-Nickel bimetallic composite activated sodium persulfate process. Chemical Engineering Journal, 2020, 386, 123995.	12.7	43
49	Degradation of trichloroethylene in aqueous solution by nanoscale calcium peroxide in the Fe(II)-based catalytic environments. Separation and Purification Technology, 2019, 226, 13-21.	7.9	41
50	Enhanced redox degradation of chlorinated hydrocarbons by the Fe(II)-catalyzed calcium peroxide system in the presence of formic acid and citric acid. Journal of Hazardous Materials, 2019, 368, 506-513.	12.4	37
51	Do high levels of PPCPs in landfill leachates influence the water environment in the vicinity of landfills? A case study of the largest landfill in China. Environment International, 2020, 135, 105404.	10.0	34
52	Degradation of trichloroethylene in aqueous solution by sodium percarbonate activated with Fe(II)-citric acid complex in the presence of surfactant Tween-80. Chemosphere, 2020, 257, 127223.	8.2	34
53	Enhanced degradation of trichloroethylene in oxidative environment by nZVI/PDA functionalized rGO catalyst. Journal of Hazardous Materials, 2018, 359, 157-165.	12.4	33
54	Removal of pharmaceutical and personal care products by sequential ultraviolet and ozonation process in a full-scale wastewater treatment plant. Frontiers of Environmental Science and Engineering, 2014, 8, 62-68.	6.0	31

#	Article	IF	CITATIONS
55	Tracking emission sources of PAHs in a region with pollution-intensive industries, Taihu Basin: From potential pollution sources to surface water. Environmental Pollution, 2020, 264, 114674.	7.5	30
56	Rainfall Influences Occurrence of Pharmaceutical and Personal Care Products in Landfill Leachates: Evidence from Seasonal Variations and Extreme Rainfall Episodes. Environmental Science & Technology, 2021, 55, 4822-4830.	10.0	30
57	Mechanism of carbon tetrachloride reduction in ferrous ion activated calcium peroxide system in the presence of methanol. Chemical Engineering Journal, 2019, 362, 243-250.	12.7	29
58	Efficient removal of trichloroethene in oxidative environment by anchoring nano FeS on reduced graphene oxide supported nZVI catalyst: The role of FeS on oxidant decomposition and iron leakage. Journal of Hazardous Materials, 2020, 392, 122328.	12.4	27
59	Trichloroethylene oxidation performance in sodium percarbonate (SPC)/Fe ²⁺ system. Environmental Technology (United Kingdom), 2014, 35, 791-798.	2.2	26
60	Rapid determination of pharmaceuticals from multiple therapeutic classes in wastewater by solid-phase extraction and ultra-performance liquid chromatography tandem mass spectrometry. Science Bulletin, 2009, 54, 4633-4643.	9.0	25
61	Degradation of trichloroethene by citric acid chelated Fe(II) catalyzing sodium percarbonate in the environment of sodium dodecyl sulfate aqueous solution. Chemosphere, 2021, 281, 130798.	8.2	25
62	Accelerated degradation of tetrachloroethylene by Fe(II) activated persulfate process with hydroxylamine for enhancing Fe(II) regeneration. Journal of Chemical Technology and Biotechnology, 2016, 91, 1280-1289.	3.2	23
63	The impact of surface properties and dominant ions on the effectiveness of G-nZVI heterogeneous catalyst for environmental remediation. Science of the Total Environment, 2019, 651, 1182-1188.	8.0	22
64	Seasonal occurrence and source analysis of pharmaceutically active compounds (PhACs) in aquatic environment in a small and medium-sized city, China. Science of the Total Environment, 2021, 769, 144272.	8.0	22
65	Pharmaceuticals and consumer products in four wastewater treatment plants in urban and suburb areas of Shanghai. Environmental Science and Pollution Research, 2015, 22, 6086-6094.	5.3	21
66	Role of reactive oxygen species in the dechlorination of trichloroethene and 1.1.1-trichloroethane in aqueous phase in UV/TiO 2 systems. Chemical Engineering Science, 2015, 123, 367-375.	3.8	21
67	Ethanol enhanced carbon tetrachloride degradation in Fe(II) activated calcium peroxide system. Separation and Purification Technology, 2018, 205, 105-112.	7.9	20
68	Efficient transformation in characteristics of cations supported-reduced graphene oxide nanocomposites for the destruction of trichloroethane. Applied Catalysis A: General, 2017, 544, 10-20.	4.3	19
69	Enhanced degradation of carbon tetrachloride by sodium percarbonate activated with ferrous ion in the presence of ethyl alcohol. Environmental Technology (United Kingdom), 2019, 40, 356-364.	2.2	19
70	Occurrence, spatiotemporal distribution, seasonal and annual variation, and source apportionment of poly– and perfluoroalkyl substances (PFASs) in the northwest of Tai Lake Basin, China. Journal of Hazardous Materials, 2021, 416, 125784.	12.4	18
71	Degradation of carbon tetrachloride in thermally activated persulfate system in the presence of formic acid. Frontiers of Environmental Science and Engineering, 2016, 10, 438-446.	6.0	17
72	Source apportionment of phenolic compounds based on a simultaneous monitoring of surface water and emission sources: A case study in a typical region adjacent to Taihu Lake watershed. Science of the Total Environment, 2020, 722, 137946.	8.0	16

#	Article	IF	CITATIONS
73	A step forward towards synthesizing a stable and regeneratable nanocomposite for remediation of trichloroethene. Chemical Engineering Journal, 2018, 347, 660-668.	12.7	15
74	Enhanced reductive degradation of carbon tetrachloride by carbon dioxide radical anion-based sodium percarbonate/Fe(II)/formic acid system in aqueous solution. Frontiers of Environmental Science and Engineering, 2018, 12, 1.	6.0	15
75	Enhanced effect of HAH on citric acid-chelated Fe(II)-catalyzed percarbonate for trichloroethene degradation. Environmental Science and Pollution Research, 2017, 24, 24318-24326.	5.3	14
76	Non-antibiotics matter: Evidence from a one-year investigation of livestock wastewater from six farms in East China. Science of the Total Environment, 2022, 846, 157418.	8.0	10
77	The performance of nCaO ₂ for BTEX removal: Hydroxyl radical generation pattern and the influences of coâ€existing environmental pollutants. Water Environment Research, 2020, 92, 622-630.	2.7	7
78	Application of glutamate to enhance carbon tetrachloride (CT) degradation by Fe(II) activated calcium peroxide in the presence of methanol: CT removal performance and mechanism. Separation and Purification Technology, 2020, 236, 116259.	7.9	6
79	Quantitatively identifying the emission sources of pharmaceutically active compounds (PhACs) in the surface water: Method development, verification and application in Huangpu River, China. Science of the Total Environment, 2022, 815, 152783.	8.0	5
80	Synergistic strengthening of SPC/Fe(II) system by CA coupled with mZVI for trichloroethylene degradation in SDS-containing aqueous solution. Journal of Environmental Chemical Engineering, 2022, 10, 108276.	6.7	5
81	Capacity estimation and preliminary strategy for reducing the release of dioxins in China. Frontiers of Environmental Science and Engineering in China, 2007, 1, 13-17.	0.8	4
82	Effect of effluent organic matter on ozonation of bezafibrate. Frontiers of Environmental Science and Engineering, 2015, 9, 962-969.	6.0	4
83	Enhanced carbon tetrachloride degradation by hydroxylamine in ferrous ion activated calcium peroxide in the presence of formic acid. Frontiers of Environmental Science and Engineering, 2020, 14, 1.	6.0	4
84	Enhancement of benzene degradation by persulfate oxidation: synergistic effect by nanoscale zero-valent iron (nZVI) and thermal activation. Water Science and Technology, 2020, 82, 998-1008.	2.5	4
85	Effective degradation of 1,2-dichloroethane in calcium peroxide activated by Fe(III): performance and mechanisms. Water Science and Technology: Water Supply, 2022, 22, 5589-5602.	2.1	3
86	Discharge of pharmaceuticals from a municipal solid waste transfer station: Overlooked influence on the contamination of pharmaceuticals in surface waters. Science of the Total Environment, 2022, 839, 156317.	8.0	3
87	Insights into the enhanced fluoranthene degradation in citric acid coupled Fe(II)-activated sodium persulfate system. Water Science and Technology: Water Supply, 2022, 22, 4822-4838.	2.1	2