Sandrine Caron

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4626799/publications.pdf

Version: 2024-02-01

159585 330143 3,443 37 30 citations h-index papers

g-index 37 37 37 5670 docs citations times ranked citing authors all docs

37

#	Article	IF	CITATIONS
1	CDKN2A/p16INK4a suppresses hepatic fatty acid oxidation through the AMPKα2-SIRT1-PPARα signaling pathway. Journal of Biological Chemistry, 2020, 295, 17310-17322.	3.4	17
2	The nuclear receptor FXR inhibits Glucagon-Like Peptide-1 secretion in response to microbiota-derived Short-Chain Fatty Acids. Scientific Reports, 2020, 10, 174.	3.3	45
3	Bile Acid Alterations Are Associated With Insulin Resistance, but Not With NASH, in Obese Subjects. Journal of Clinical Endocrinology and Metabolism, 2017, 102, 3783-3794.	3.6	78
4	Chromatin recruitment of activated AMPK drives fasting response genes co-controlled by GR and PPARα. Nucleic Acids Research, 2016, 44, 10539-10553.	14.5	56
5	PPARα gene expression correlates with severity and histological treatment response in patients with non-alcoholic steatohepatitis. Journal of Hepatology, 2015, 63, 164-173.	3.7	270
6	Farnesoid X receptor inhibits glucagon-like peptide-1 production by enteroendocrine L cells. Nature Communications, 2015, 6, 7629.	12.8	274
7	Screening strategy to generate cell specific recombination: a case report with the RIP-Cre mice. Transgenic Research, 2015, 24, 803-812.	2.4	8
8	Glucose sensing O-GlcNAcylation pathway regulates the nuclear bile acid receptor farnesoid X receptor (FXR). Hepatology, 2014, 59, 2022-2033.	7.3	55
9	Alternative human liver transcripts of TCF7L2 bind to the gluconeogenesis regulator HNF4α at the protein level. Diabetologia, 2014, 57, 785-796.	6.3	33
10	<i>Cdkn2a</i> /p16 <i>Ink4a</i> Regulates Fasting-Induced Hepatic Gluconeogenesis Through the PKA-CREB-PGC11 \pm Pathway. Diabetes, 2014, 63, 3199-3209.	0.6	36
11	Cell-Specific Dysregulation of MicroRNA Expression in Obese White Adipose Tissue. Journal of Clinical Endocrinology and Metabolism, 2014, 99, 2821-2833.	3.6	55
12	Glucose-lowering effects of intestinal bile acid sequestration through enhancement of splanchnic glucose utilization. Trends in Endocrinology and Metabolism, 2014, 25, 235-244.	7.1	43
13	Prothrombotic factors in histologically proven nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Hepatology, 2014, 59, 121-129.	7.3	141
14	O-GlcNAcylation Links ChREBP and FXR to Glucose-Sensing. Frontiers in Endocrinology, 2014, 5, 230.	3.5	28
15	Farnesoid X Receptor Inhibits the Transcriptional Activity of Carbohydrate Response Element Binding Protein in Human Hepatocytes. Molecular and Cellular Biology, 2013, 33, 2202-2211.	2.3	110
16	PNPLA3 is regulated by glucose in human hepatocytes, and its I148M mutant slows down triglyceride hydrolysis. American Journal of Physiology - Endocrinology and Metabolism, 2012, 302, E1063-E1069.	3.5	76
17	Genome-Wide Profiling of Liver X Receptor, Retinoid X Receptor, and Peroxisome Proliferator-Activated Receptor $\hat{I}\pm$ in Mouse Liver Reveals Extensive Sharing of Binding Sites. Molecular and Cellular Biology, 2012, 32, 852-867.	2.3	205
18	The human hepatocyte cell lines IHH and HepaRG: models to study glucose, lipid and lipoprotein metabolism. Archives of Physiology and Biochemistry, 2012, 118, 102-111.	2.1	46

#	Article	IF	Citations
19	Evaluation of inflammatory and angiogenic factors in patients with non-alcoholic fatty liver disease. Cytokine, 2012, 59, 442-449.	3.2	100
20	Bile Acid Metabolism and the Pathogenesis of Type 2 Diabetes. Current Diabetes Reports, 2011, 11, 160-166.	4.2	201
21	Farnesoid X Receptor Deficiency Improves Glucose Homeostasis in Mouse Models of Obesity. Diabetes, 2011, 60, 1861-1871.	0.6	261
22	Peroxisome Proliferator–Activated Receptor-α Gene Level Differently Affects Lipid Metabolism and Inflammation in Apolipoprotein E2 Knock-In Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 1573-1579.	2.4	66
23	Transcriptional Activation of Apolipoprotein CIII Expression by Glucose May Contribute to Diabetic Dyslipidemia. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 513-519.	2.4	129
24	The nuclear receptor FXR is expressed in pancreatic $\hat{l}^2\hat{a}\in\mathfrak{e}$ ells and protects human islets from lipotoxicity. FEBS Letters, 2010, 584, 2845-2851.	2.8	80
25	The Farnesoid X Receptor Regulates Adipocyte Differentiation and Function by Promoting Peroxisome Proliferator-activated Receptor- \hat{I}^3 and Interfering with the Wnt/ \hat{I}^2 -Catenin Pathways. Journal of Biological Chemistry, 2010, 285, 36759-36767.	3.4	79
26	PPARÎ \pm blocks glucocorticoid receptor Î \pm -mediated transactivation but cooperates with the activated glucocorticoid receptor Î \pm for transrepression on NF-Î $^\circ$ B. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 7397-7402.	7.1	102
27	How to modulate FXR activity to treat the Metabolic Syndrome. Drug Discovery Today Disease Mechanisms, 2009, 6, e55-e64.	0.8	9
28	LEPROT and LEPROTL1 cooperatively decrease hepatic growth hormone action in mice. Journal of Clinical Investigation, 2009, 119, 3830-3838.	8.2	47
29	Activation of the farnesoid X receptor represses PCSK9 expression in human hepatocytes. FEBS Letters, 2008, 582, 949-955.	2.8	89
30	Apolipoprotein CIII. Circulation Research, 2008, 103, 1348-1350.	4.5	13
31	The farnesoid X receptor induces fetuin-B gene expression in human hepatocytes. Biochemical Journal, 2007, 407, 461-469.	3.7	17
32	Bile acids, farnesoid X receptor, atherosclerosis and metabolic control. Current Opinion in Lipidology, 2007, 18, 289-297.	2.7	53
33	FXRâ€deficiency confers increased susceptibility to torpor. FEBS Letters, 2007, 581, 5191-5198.	2.8	30
34	FXR: More than a Bile Acid Receptor?. Endocrinology, 2006, 147, 4022-4024.	2.8	8
35	The Farnesoid X Receptor Modulates Adiposity and Peripheral Insulin Sensitivity in Mice. Journal of Biological Chemistry, 2006, 281, 11039-11049.	3.4	463
36	Selective Modification of Eukaryotic Initiation Factor 4F (eIF4F) at the Onset of Cell Differentiation: Recruitment of eIF4GII and Long-Lasting Phosphorylation of eIF4E. Molecular and Cellular Biology, 2004, 24, 4920-4928.	2.3	39

SANDRINE CARON

#	Article	lF	CITATIONS
37	STAT5 and Oct-1 Form a Stable Complex That Modulates Cyclin D1 Expression. Molecular and Cellular Biology, 2003, 23, 8934-8945.	2.3	81