Matthias Begemann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4626369/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Trans-acting genetic variants causing multilocus imprinting disturbance (MLID): common mechanisms and consequences. Clinical Epigenetics, 2022, 14, 41.	4.1	14
2	Biallelic PADI6 variants cause multilocus imprinting disturbances and miscarriages in the same family. European Journal of Human Genetics, 2021, 29, 575-580.	2.8	24
3	Unusual deletion of the maternal 11p15 allele in Beckwith–Wiedemann syndrome with an impact on both imprinting domains. Clinical Epigenetics, 2021, 13, 30.	4.1	5
4	DNA methylation changes during long-term in vitro cell culture are caused by epigenetic drift. Communications Biology, 2021, 4, 598.	4.4	27
5	C2orf69 mutations disrupt mitochondrial function and cause a multisystem human disorder with recurring autoinflammation. Journal of Clinical Investigation, 2021, 131, .	8.2	13
6	Biallelic loss-of-function variants in WDR11 are associated with microcephaly and intellectual disability. European Journal of Human Genetics, 2021, 29, 1663-1668.	2.8	7
7	Successful allogeneic stem cell transplantation of a patient with Werner syndrome and acute myeloid leukemia. Leukemia Research, 2021, 108, 106609.	0.8	1
8	One test for all: whole exome sequencing significantly improves the diagnostic yield in growth retarded patients referred for molecular testing for Silver–Russell syndrome. Orphanet Journal of Rare Diseases, 2021, 16, 42.	2.7	12
9	Germline <i>GPR161</i> Mutations Predispose to Pediatric Medulloblastoma. Journal of Clinical Oncology, 2020, 38, 43-50.	1.6	50
10	Comparison of flowâ€FISH and MM–qPCR telomere length assessment techniques for the screening of telomeropathies. Annals of the New York Academy of Sciences, 2020, 1466, 93-103.	3.8	35
11	A novel homozygous splice-site mutation in the SPTBN4 gene causes axonal neuropathy without intellectual disability. European Journal of Medical Genetics, 2020, 63, 103826.	1.3	9
12	Molecular characterization of temple syndrome families with 14q32 epimutations. European Journal of Medical Genetics, 2020, 63, 104077.	1.3	2
13	Loss of supervillin causes myopathy with myofibrillar disorganization and autophagic vacuoles. Brain, 2020, 143, 2406-2420.	7.6	15
14	Inherited cases of <scp><i>CNOT3</i></scp> â€associated intellectual developmental disorder with speech delay, autism, and dysmorphic facies. Clinical Genetics, 2020, 98, 408-412.	2.0	9
15	Need for a precise molecular diagnosis in Beckwith-Wiedemann and Silver-Russell syndrome: what has to be considered and why it is important. Journal of Molecular Medicine, 2020, 98, 1447-1455.	3.9	15
16	<i>HMGA2</i> Variants in Silver-Russell Syndrome: Homozygous and Heterozygous Occurrence. Journal of Clinical Endocrinology and Metabolism, 2020, 105, 2401-2407.	3.6	11
17	Frequency of KCNQ1 variants causing loss of methylation of Imprinting Centre 2 in Beckwith-Wiedemann syndrome. Clinical Epigenetics, 2020, 12, 63.	4.1	11
18	Disturbed genomic imprinting and its relevance for human reproduction: causes and clinical consequences. Human Reproduction Update, 2020, 26, 197-213.	10.8	51

MATTHIAS BEGEMANN

#	Article	IF	CITATIONS
19	Molecular testing for imprinting disorders. Medizinische Genetik, 2020, 32, 305-319.	0.2	2
20	Prevalence of Inherited Predisposition Syndromes in Young Patients with Acute Myeloid Leukemia and Aberrant Karyotype. Blood, 2020, 136, 41-42.	1.4	0
21	Male infant with paternal uniparental diploidy mosaicism and a 46,XX/46,XY karyotype. American Journal of Medical Genetics, Part A, 2019, 179, 2252-2256.	1.2	7
22	Biallelic CSGALNACT1-mutations cause a mild skeletal dysplasia. Bone, 2019, 127, 446-451.	2.9	4
23	Contribution of GRB10 to the prenatal phenotype in Silver-Russell syndrome? Lessons from 7p12 copy number variations. European Journal of Medical Genetics, 2019, 62, 103671.	1.3	5
24	Identification of transcription factor binding sites using ATAC-seq. Genome Biology, 2019, 20, 45.	8.8	346
25	Novel familial distal imprinting centre 1 (11p15.5) deletion provides further insights in imprinting regulation. Clinical Epigenetics, 2019, 11, 30.	4.1	13
26	Search for cis-acting factors and maternal effect variants in Silver-Russell patients with ICR1 hypomethylation and their mothers. European Journal of Human Genetics, 2019, 27, 42-48.	2.8	13
27	Next generation sequencing and imprinting disorders: Current applications and future perspectives: Lessons from Silver-Russell syndrome. Molecular and Cellular Probes, 2019, 44, 1-7.	2.1	11
28	DEGS1-associated aberrant sphingolipid metabolism impairs nervous system function in humans. Journal of Clinical Investigation, 2019, 129, 1229-1239.	8.2	65
29	Recurrent somatic mutations are rare in patients with cryptic dyskeratosis congenita. Leukemia, 2018, 32, 1762-1767.	7.2	27
30	Maternal variants in <i>NLRP</i> and other maternal effect proteins are associated with multilocus imprinting disturbance in offspring. Journal of Medical Genetics, 2018, 55, 497-504.	3.2	126
31	NLRP genes and their role in preeclampsia and multi-locus imprinting disorders. Journal of Perinatal Medicine, 2018, 46, 169-173.	1.4	11
32	Familial <i>NEDD4L</i> variant in periventricular nodular heterotopia and in a fetus with hypokinesia and flexion contractures. Molecular Genetics & amp; Genomic Medicine, 2018, 6, 1255-1260.	1.2	12
33	Search for altered imprinting marks in Mayer–Rokitansky–Küster–Hauser patients. Molecular Genetics & Genomic Medicine, 2018, 6, 1225-1228.	1.2	5
34	Targeted Next Generation Sequencing Approach in Patients Referred for Silver-Russell Syndrome Testing Increases the Mutation Detection Rate and Provides Decisive Information for Clinical Management. Journal of Pediatrics, 2017, 187, 206-212.e1.	1.8	22
35	Maternal heterozygous NLRP7 variant results in recurrent reproductive failure and imprinting disturbances in the offspring. European Journal of Human Genetics, 2017, 25, 924-929.	2.8	39
36	Maternal uniparental disomy of chromosome 16 [upd(16)mat]: clinical features are rather caused by (hidden) trisomy 16 mosaicism than by upd(16)mat itself. Clinical Genetics, 2017, 92, 45-51.	2.0	29

MATTHIAS BEGEMANN

#	Article	IF	CITATIONS
37	The maternal uniparental disomy of chromosome 6Â(upd(6)mat) "phenotypeâ€! result of placental trisomyÂ6Âmosaicism?. Molecular Genetics & Genomic Medicine, 2017, 5, 668-677.	1.2	21
38	Recent Advances in Imprinting Disorders. Clinical Genetics, 2017, 91, 3-13.	2.0	101
39	Formation of upd(7)mat by trisomic rescue: SNP array typing provides new insights in chromosomal nondisjunction. Molecular Cytogenetics, 2017, 10, 28.	0.9	10
40	EMQN best practice guidelines for the molecular genetic testing and reporting of chromosome 11p15 imprinting disorders: Silver–Russell and Beckwith–Wiedemann syndrome. European Journal of Human Genetics, 2016, 24, 1377-1387.	2.8	68
41	No major contribution of <i>IGF2</i> variants to the etiology of sporadic 11p15â€associated imprinting disorders. American Journal of Medical Genetics, Part A, 2016, 170, 283-284.	1.2	4
42	Microdeletions of the 7q32.2 imprinted region are associated with Silver–Russell syndrome features. American Journal of Medical Genetics, Part A, 2016, 170, 743-749.	1.2	17
43	Kaiso mediates human ICR1 methylation maintenance and H19 transcriptional fine regulation. Clinical Epigenetics, 2016, 8, 47.	4.1	15
44	Phenotypic spectrum and extent of DNA methylation defects associated with multilocus imprinting disturbances. Epigenomics, 2016, 8, 801-816.	2.1	26
45	Examinations of maternal uniparental disomy and epimutations for chromosomes 6, 14, 16 and 20 in Silver-Russell syndrome-like phenotypes. BMC Medical Genetics, 2016, 17, 20.	2.1	19
46	First report on concordant monozygotic twins with Silver–Russell syndrome and ICR1 hypomethylation. European Journal of Medical Genetics, 2016, 59, 1-4.	1.3	12
47	Prenatal molecular testing for Beckwith–Wiedemann and Silver–Russell syndromes: a challenge for molecular analysis and genetic counseling. European Journal of Human Genetics, 2016, 24, 784-793.	2.8	44
48	Elucidation of Additional Mutations By Next-Generation Sequencing Is of Clinical Significance in Patients with Rare MPNs and MDS/MPN Overlap Syndromes. Blood, 2016, 128, 4260-4260.	1.4	0
49	Syndromic ciliopathies: From single gene to multi gene analysis by SNP arrays and next generation sequencing. Molecular and Cellular Probes, 2015, 29, 299-307.	2.1	27
50	Paternally Inherited <i>IGF2</i> Mutation and Growth Restriction. New England Journal of Medicine, 2015, 373, 349-356.	27.0	165
51	Mutations in NLRP5 are associated with reproductive wastage and multilocus imprinting disorders in humans. Nature Communications, 2015, 6, 8086.	12.8	134
52	Congenital imprinting disorders: Application of multilocus and high throughput methods to decipher new pathomechanisms and improve their management. Molecular and Cellular Probes, 2015, 29, 282-290.	2.1	12
53	Novel deletions affecting the MEG3-DMR provide further evidence for a hierarchical regulation of imprinting in 14q32. European Journal of Human Genetics, 2015, 23, 180-188.	2.8	60
54	CDKN1C mutations: two sides of the same coin. Trends in Molecular Medicine, 2014, 20, 614-622.	6.7	89

MATTHIAS BEGEMANN

#	Article	IF	CITATIONS
55	Additional molecular findings in 11p15-associated imprinting disorders: an urgent need for multi-locus testing. Journal of Molecular Medicine, 2014, 92, 769-777.	3.9	44
56	Uncovering common pathogenic transcriptional dysregulations in Silver-Russell syndrome. Molecular and Cellular Pediatrics, 2014, 1, A13.	1.8	0
57	Congenital Imprinting Disorders: A Novel Mechanism Linking Seemingly Unrelated Disorders. Journal of Pediatrics, 2013, 163, 1202-1207.	1.8	6
58	Genome-wide paternal uniparental disomy mosaicism in a woman with Beckwith–Wiedemann syndrome and ovarian steroid cell tumour. European Journal of Human Genetics, 2013, 21, 788-791.	2.8	37
59	Haploinsufficiency of <i>ANKRD11</i> (16q24.3) Is Not Obligatorily Associated with Cognitive Impairment but Shows a Clinical Overlap with Silver-Russell Syndrome. Molecular Syndromology, 2013, 4, 246-249.	0.8	17
60	IGF1R mutation analysis in short children with Silver-Russell syndrome features. Journal of Pediatric Genetics, 2013, 2, 113-7.	0.7	5
61	Clinical significance of copy number variations in the 11p15.5 imprinting control regions: new cases and review of the literature. Journal of Medical Genetics, 2012, 49, 547-553.	3.2	67
62	Use of multilocus methylation-specific single nucleotide primer extension (MS-SNuPE) technology in diagnostic testing for human imprinted loci. Epigenetics, 2012, 7, 473-481.	2.7	29
63	Molecular Karyotyping as a Relevant Diagnostic Tool in Children with Growth Retardation with Silver-Russell Features. Journal of Pediatrics, 2012, 161, 933-942.e1.	1.8	39
64	Epigenetic and genetic diagnosis of Silver–Russell syndrome. Expert Review of Molecular Diagnostics, 2012, 12, 459-471.	3.1	28
65	Heterogeneous growth patterns in carriers of chromosome 7p12.2 imbalances affecting <i>GRB10</i> . American Journal of Medical Genetics, Part A, 2012, 158A, 2815-2819.	1.2	7
66	Deletion of the paternal allele of the imprinted MEST/PEG1 region in a patient with Silver–Russell syndrome features. Clinical Genetics, 2012, 81, 298-300.	2.0	27
67	Segmental maternal uniparental disomy 7q associated with <i>DLK1/GTL2</i> (14q32) hypomethylation. American Journal of Medical Genetics, Part A, 2012, 158A, 423-428.	1.2	21
68	Silver–Russell syndrome. Best Practice and Research in Clinical Endocrinology and Metabolism, 2011, 25, 153-160.	4.7	31
69	Disturbed methylation at multiple imprinted loci: an increasing observation in imprinting disorders. Epigenomics, 2011, 3, 625-637.	2.1	28
70	Silver-Russell patients showing a broad range of ICR1 and ICR2 hypomethylation in different tissues. Clinical Genetics, 2011, 80, 83-88.	2.0	54
71	Testing of Buccal Swab DNA Does Not Increase the Detection Rate for Imprinting Control Region 1 Hypomethylation in Silver-Russell Syndrome. Genetic Testing and Molecular Biomarkers, 2011, 15, 725-726.	0.7	2
72	Genetik und Epigenetik des Silver-Russell-Syndroms. Medizinische Genetik, 2010, 22, 405-410.	0.2	1

#	Article	IF	CITATIONS
73	Silver-Russell syndrome: genetic basis and molecular genetic testing. Orphanet Journal of Rare Diseases, 2010, 5, 19.	2.7	74
74	Genetic and epigenetic findings in Silver-Russell syndrome. Pediatric Endocrinology Reviews, 2010, 8, 86-93.	1.2	22