Tjaart Andries Petrus de Beer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/462619/publications.pdf Version: 2024-02-01

TJAART ANDRIES PETRUS DE

#	Article	IF	CITATIONS
1	Evolutionary Diversification of Host-Targeted Bartonella Effectors Proteins Derived from a Conserved FicTA Toxin-Antitoxin Module. Microorganisms, 2021, 9, 1645.	3.6	5
2	SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Research, 2018, 46, W296-W303.	14.5	8,474
3	The SWISS-MODEL Repository—new features and functionality. Nucleic Acids Research, 2017, 45, D313-D319.	14.5	1,227
4	A computational protocol to evaluate the effects of protein mutants in the kinase gatekeeper position on the binding of ATP substrate analogues. BMC Research Notes, 2017, 10, 104.	1.4	7
5	Common sequence variants affect molecular function more than rare variants?. Scientific Reports, 2017, 7, 1608.	3.3	20
6	The BID Domain of Type IV Secretion Substrates Forms a Conserved Four-Helix Bundle Topped with a Hook. Structure, 2017, 25, 203-211.	3.3	15
7	StrÃ,mme Syndrome Is a Ciliary Disorder Caused by Mutations in <i>CENPF</i> . Human Mutation, 2016, 37, 359-363.	2.5	27
8	Synthesis of empty african horse sickness virus particles. Virus Research, 2016, 213, 184-194.	2.2	17
9	The SIB Swiss Institute of Bioinformatics' resources: focus on curated databases. Nucleic Acids Research, 2016, 44, D27-D37.	14.5	64
10	Insight into Neutral and Disease-Associated Human Genetic Variants through Interpretable Predictors. PLoS ONE, 2015, 10, e0120729.	2.5	2
11	Determination of common genetic variants within the non-structural proteins of foot-and-mouth disease viruses isolated in sub-Saharan Africa. Veterinary Microbiology, 2015, 177, 106-122.	1.9	6
12	Genetic heterogeneity in the leader and P1-coding regions of foot-and-mouth disease virus serotypes A and O in Africa. Archives of Virology, 2014, 159, 947-61.	2.1	11
13	The Catalytic Site Atlas 2.0: cataloging catalytic sites and residues identified in enzymes. Nucleic Acids Research, 2014, 42, D485-D489.	14.5	168
14	PDBsum additions. Nucleic Acids Research, 2014, 42, D292-D296.	14.5	279
15	Amino Acid Changes in Disease-Associated Variants Differ Radically from Variants Observed in the 1000 Genomes Project Dataset. PLoS Computational Biology, 2013, 9, e1003382.	3.2	54
16	LigSearch: a knowledge-based web server to identify likely ligands for a protein target. Acta Crystallographica Section D: Biological Crystallography, 2013, 69, 2395-2402.	2.5	2
17	Analysis of SAT Type Foot-And-Mouth Disease Virus Capsid Proteins and the Identification of Putative Amino Acid Residues Affecting Virus Stability. PLoS ONE, 2013, 8, e61612.	2.5	21
18	Current challenges in genome annotation through structural biology and bioinformatics. Current Opinion in Structural Biology, 2012, 22, 594-601.	5.7	14

TJAART ANDRIES PETRUS DE

#	Article	IF	CITATIONS
19	1,000 structures and more from the MCSG. BMC Structural Biology, 2011, 11, 2.	2.3	14
20	Predicting antigenic sites on the foot-and-mouth disease virus capsid of the South African Territories types using virus neutralization data. Journal of General Virology, 2011, 92, 2297-2309.	2.9	40
21	Mapping of amino acid residues responsible for adhesion of cell culture-adapted foot-and-mouth disease SAT type viruses. Virus Research, 2010, 153, 82-91.	2.2	40
22	In silico Discovery of Chemotherapeutic Agents. , 2010, , 279-304.		0
23	Sequence-Based Prediction for Vaccine Strain Selection and Identification of Antigenic Variability in Foot-and-Mouth Disease Virus. PLoS Computational Biology, 2010, 6, e1001027.	3.2	63
24	The Malarial Drug Target Plasmodium falciparum 1-Deoxy-D-Xylulose-5- Phosphate Reductoisomerase (PfDXR): Development of a 3-D Model for Identification of Novel, Structural and Functional Features and for Inhibitor Screening (Supplementary Information). Protein and Peptide Letters, 2010, 17, 109-120.	0.9	14
25	Discovery: an interactive resource for the rational selection and comparison of putative drug target proteins in malaria. Malaria Journal, 2009, 8, 178.	2.3	9
26	Structure-Function Study of a Plasmodium falciparum Hsp70 Using Three Dimensional Modelling and in Vitro Analyses. Protein and Peptide Letters, 2008, 15, 1117-1125.	0.9	55
27	Elucidation of sulfadoxine resistance with structural models of the bifunctional Plasmodium falciparum dihydropterin pyrophosphokinase–dihydropteroate synthase. Bioorganic and Medicinal Chemistry, 2006, 14, 4433-4443.	3.0	22