Ivonne Trebs

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/462564/publications.pdf

Version: 2024-02-01

27 papers

1,592 citations

430874 18 h-index 27 g-index

28 all docs

28 docs citations

28 times ranked

2808 citing authors

#	Article	IF	CITATIONS
1	Soil Nitrite as a Source of Atmospheric HONO and OH Radicals. Science, 2011, 333, 1616-1618.	12.6	431
2	Sources and properties of Amazonian aerosol particles. Reviews of Geophysics, 2010, 48, .	23.0	283
3	Overview of the inorganic and organic composition of size-segregated aerosol in Rondônia, Brazil, from the biomass-burning period to the onset of the wet season. Journal of Geophysical Research, 2007, 112 ,.	3.3	128
4	The NH4+-NO3â^'-Clâ^'-SO42â^'-H2O aerosol system and its gas phase precursors at a pasture site in the Amazon Basin: How relevant are mineral cations and soluble organic acids?. Journal of Geophysical Research, 2005, 110, .	3.3	94
5	An Automated Analyzer to Measure Surface-Atmosphere Exchange Fluxes of Water Soluble Inorganic Aerosol Compounds and Reactive Trace Gases. Environmental Science & Technology, 2009, 43, 1412-1418.	10.0	78
6	N2O consumption by low-nitrogen soil and its regulation by water and oxygen. Soil Biology and Biochemistry, 2013, 60, 165-172.	8.8	73
7	Canopy-scale biophysical controls of transpiration and evaporation in the Amazon Basin. Hydrology and Earth System Sciences, 2016, 20, 4237-4264.	4.9	62
8	Soil HONO emissions at high moisture content are driven by microbial nitrate reduction to nitrite: tackling the HONO puzzle. ISME Journal, 2019, 13, 1688-1699.	9.8	57
9	Reintroducing radiometric surface temperature into the <scp>P</scp> enmanâ€ <scp>M</scp> onteith formulation. Water Resources Research, 2015, 51, 6214-6243.	4.2	49
10	Urban influences on the nitrogen cycle in Puerto Rico. Biogeochemistry, 2006, 79, 109-133.	3.5	37
11	Bridging Thermal Infrared Sensing and Physicallyâ€Based Evapotranspiration Modeling: From Theoretical Implementation to Validation Across an Aridity Gradient in Australian Ecosystems. Water Resources Research, 2018, 54, 3409-3435.	4.2	36
12	Impact of the Manaus urban plume on trace gas mixing ratios near the surface in the Amazon Basin: Implications for the NOâ \in NO ₂ â \in O ₃ photostationary state and peroxy radical levels. Journal of Geophysical Research, 2012, 117, .	3.3	29
13	Incorporating a root water uptake model based on the hydraulic architecture approach in terrestrial systems simulations. Agricultural and Forest Meteorology, 2019, 269-270, 28-45.	4.8	28
14	Flux-variance and flux-gradient relationships in the roughness sublayer over the Amazon forest. Agricultural and Forest Meteorology, 2017, 239, 213-222.	4.8	25
15	Investigation of the influence of liquid surface films on O ₃ and PAN deposition to plant leaves coated with organic/inorganic solution. Journal of Geophysical Research D: Atmospheres, 2016, 121, 14,239.	3.3	24
16	The role of aerodynamic resistance in thermal remote sensing-based evapotranspiration models. Remote Sensing of Environment, 2021, 264, 112602.	11.0	22
17	Assessment of the total, stomatal, cuticular, and soil 2 year ozone budgets of an agricultural field with winter wheat and maize crops. Journal of Geophysical Research G: Biogeosciences, 2013, 118, 1120-1132.	3.0	21
18	Using phase lags to evaluate model biases in simulating the diurnal cycle of evapotranspiration: a case study in Luxembourg. Hydrology and Earth System Sciences, 2019, 23, 515-535.	4.9	21

#	Article	IF	Citations
19	Novel Tracer Method To Measure Isotopic Labeled Gas-Phase Nitrous Acid (HO ¹⁵ NO) in Biogeochemical Studies. Environmental Science & Environm	10.0	19
20	Scalar turbulent behavior in the roughness sublayer of an Amazonian forest. Atmospheric Chemistry and Physics, 2016, 16, 11349-11366.	4.9	19
21	A user-driven case-based reasoning tool for infilling missing values in daily mean river flow records. Environmental Modelling and Software, 2016, 82, 308-320.	4.5	18
22	Nitrogen oxides and ozone fluxes from an oilseed-rape management cycle: the influence of cattle slurry application. Biogeosciences, 2017, 14, 2225-2244.	3.3	14
23	Aerosol Inorganic Composition at a Tropical Site: Discrepancies Between Filter-Based Sampling and a Semi-Continuous Method. Aerosol Science and Technology, 2008, 42, 255-269.	3.1	10
24	Evidência observacional das brisas do lago de Balbina (Amazonas) e seus efeitos sobre a concentração do ozônio. Acta Amazonica, 2004, 34, 605-611.	0.7	7
25	Downwelling longwave radiation and sensible heat flux observations are critical for surface temperature and emissivity estimation from flux tower data. Scientific Reports, 2022, 12, .	3.3	3
26	Immission and Dry Deposition. Springer Handbooks, 2021, , 1445-1471.	0.6	2
27	Thermal and Shortwave Infrared Remote Sensing of Ecosystem Processes: Opportunities, Synergies, and Challenges., 2021,,.		1