List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4625429/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Transcriptional and epigenetic regulation in thymic epithelial cells*. Immunological Reviews, 2022, 305, 43-58.	6.0	7
2	ILC Differentiation from Progenitors in the Bone Marrow. Advances in Experimental Medicine and Biology, 2022, 1365, 7-24.	1.6	3
3	Inhibitory signaling sustains a distinct early memory CD8 ⁺ T cell precursor that is resistant to DNA damage. Science Immunology, 2021, 6, .	11.9	52
4	Building early defenses. Cell Research, 2021, 31, 1041-1042.	12.0	0
5	The histone demethylase Lsd1 regulates multiple repressive gene programs during T cell development. Journal of Experimental Medicine, 2021, 218, .	8.5	4
6	Single-cell analysis of RORα tracer mouse lung reveals ILC progenitors and effector ILC2 subsets. Journal of Experimental Medicine, 2020, 217, .	8.5	74
7	Postnatal Involution and Counter-Involution of the Thymus. Frontiers in Immunology, 2020, 11, 897.	4.8	26
8	A Shared Regulatory Element Controls the Initiation of Tcf7 Expression During Early T Cell and Innate Lymphoid Cell Developments. Frontiers in Immunology, 2020, 11, 470.	4.8	23
9	Switch hitter: Bcl11b in T cells and ILC2s. Journal of Experimental Medicine, 2020, 217, .	8.5	1
10	The transcription factor TCF-1 enforces commitment to the innate lymphoid cell lineage. Nature Immunology, 2019, 20, 1150-1160.	14.5	81
11	Identification of an Intronic Regulatory Element Necessary for Tissue-Specific Expression of <i>Foxn1</i> in Thymic Epithelial Cells. Journal of Immunology, 2019, 203, 686-695.	0.8	17
12	Response to Comment on "ldentification of an Intronic Regulatory Element Necessary for Tissue-Specific Expression of Foxn1 in Thymic Epithelial Cells― Journal of Immunology, 2019, 203, 2355.2-2356.	0.8	0
13	MAIT cells are imprinted by the microbiota in early life and promote tissue repair. Science, 2019, 366, .	12.6	342
14	Heterozygous FOXN1 Variants Cause Low TRECs and Severe T Cell Lymphopenia, Revealing a Crucial Role of FOXN1 in Supporting Early Thymopoiesis. American Journal of Human Genetics, 2019, 105, 549-561.	6.2	52
15	Blocked O-GlcNAc cycling disrupts mouse hematopoeitic stem cell maintenance and early T cell development. Scientific Reports, 2019, 9, 12569.	3.3	27
16	TOX and TOX2 transcription factors cooperate with NR4A transcription factors to impose CD8 ⁺ T cell exhaustion. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 12410-12415.	7.1	481
17	The PLOS Biology XV Collection: 15 Years of Exceptional Science Highlighted across 12 Months. PLoS Biology, 2019, 17, e3000180.	5.6	1
18	Cutting Edge: Core Binding Factor β Is Required for Group 2 Innate Lymphoid Cell Activation. Journal of Immunology, 2019, 202, 1669-1673.	0.8	8

#	Article	IF	CITATIONS
19	Dominant activating RAC2 mutation with lymphopenia, immunodeficiency, and cytoskeletal defects. Blood, 2019, 133, 1977-1988.	1.4	61
20	The transcription factor c-Myb regulates CD8+ T cell stemness and antitumor immunity. Nature Immunology, 2019, 20, 337-349.	14.5	113
21	Myc controls a distinct transcriptional program in fetal thymic epithelial cells that determines thymus growth. Nature Communications, 2019, 10, 5498.	12.8	39
22	Lineage specification in innate lymphocytes. Cytokine and Growth Factor Reviews, 2018, 42, 20-26.	7.2	9
23	Development and differentiation of early innate lymphoid progenitors. Journal of Experimental Medicine, 2018, 215, 249-262.	8.5	96
24	Cutting Edge: Notch Signaling Promotes the Plasticity of Group-2 Innate Lymphoid Cells. Journal of Immunology, 2017, 198, 1798-1803.	0.8	115
25	CD4+ T cell effector commitment coupled to self-renewal by asymmetric cell divisions. Journal of Experimental Medicine, 2017, 214, 39-47.	8.5	91
26	A novel role for p53 in self-tolerance. Blood, 2017, 130, 388-389.	1.4	0
27	T cell progenitor therapy–facilitated thymopoiesis depends upon thymic input and continued thymic microenvironment interaction. JCI Insight, 2017, 2, .	5.0	18
28	CD8 + T Lymphocyte Self-Renewal during Effector Cell Determination. Cell Reports, 2016, 17, 1773-1782.	6.4	101
29	Targeting the kinase activities of ATR and ATM exhibits antitumoral activity in mouse models of <i>MLL</i> -rearranged AML. Science Signaling, 2016, 9, ra91.	3.6	63
30	The development of adult innate lymphoid cells. Current Opinion in Immunology, 2016, 39, 114-120.	5.5	40
31	A doppelgÃ ¤ ger of T cell development. Cell Cycle, 2016, 15, 479-480.	2.6	0
32	Intrathymic Injection. Methods in Molecular Biology, 2016, 1323, 203-209.	0.9	8
33	Group 2 innate lymphoid cells mediate ozone-induced airway inflammation and hyperresponsiveness in mice. Journal of Allergy and Clinical Immunology, 2016, 137, 571-578.	2.9	83
34	Pillars Article: Coreceptor Reversal in the Thymus: Signaled CD4+8+ Thymocytes Initially Terminate CD8 Transcription Even When Differentiating into CD8+ T Cells. Immunity. 2000. 13: 59-71. Journal of Immunology, 2016, 196, 1985-97.	0.8	0
35	Transcriptional Regulation of Innate and Adaptive Lymphocyte Lineages. Annual Review of Immunology, 2015, 33, 607-642.	21.8	155
36	Transcription Factor Bcl11b Controls Identity and Function of Mature Type 2 Innate Lymphoid Cells. Immunity, 2015, 43, 354-368.	14.3	137

#	Article	IF	CITATIONS
37	TCF-1 upregulation identifies early innate lymphoid progenitors in the bone marrow. Nature Immunology, 2015, 16, 1044-1050.	14.5	228
38	Editorial: Ephs, ephrins, and early T cell development. Journal of Leukocyte Biology, 2015, 98, 877-879.	3.3	3
39	The microRNA Biogenesis Machinery Modulates Lineage Commitment during αβ T Cell Development. Journal of Immunology, 2014, 193, 4032-4042.	0.8	11
40	Ozone Inhalation Induces Epithelial IL-33 and Thymic Stromal Lymphopoietin (TSLP) and Leads To Eosinophilic Airway Inflammation. Journal of Allergy and Clinical Immunology, 2014, 133, AB145.	2.9	1
41	Deconstructing development. Nature Immunology, 2013, 14, 529-531.	14.5	2
42	T Cell Factor 1 Is Required for Group 2 Innate Lymphoid Cell Generation. Immunity, 2013, 38, 694-704.	14.3	214
43	IL-25 simultaneously elicits distinct populations of innate lymphoid cells and multipotent progenitor type 2 (MPPtype2) cells. Journal of Experimental Medicine, 2013, 210, 1823-1837.	8.5	127
44	T cell development requires constraint of the myeloid regulator C/EBP- $\hat{1}\pm$ by the Notch target and transcriptional repressor Hes1. Nature Immunology, 2013, 14, 1277-1284.	14.5	87
45	Early T-cell progenitors are the major granulocyte precursors in the adult mouse thymus. Blood, 2013, 121, 64-71.	1.4	35
46	Expression of Functional P-Selectin Glycoprotein Ligand 1 on Hematopoietic Progenitors Is Developmentally Regulated. Journal of Immunology, 2012, 188, 4385-4393.	0.8	34
47	Rebuilding the Thymus. Science, 2012, 336, 40-41.	12.6	7
48	Decoding HSC heterogeneity. Blood, 2012, 119, 4819-4820.	1.4	1
49	Losing TREC with Age. Immunity, 2012, 36, 163-165.	14.3	8
50	Erythroid/Myeloid Progenitors and Hematopoietic Stem Cells Originate from Distinct Populations of Endothelial Cells. Cell Stem Cell, 2011, 9, 541-552.	11.1	216
51	A critical role for TCF-1 in T-lineage specification and differentiation. Nature, 2011, 476, 63-68.	27.8	351
52	Signal integration and crosstalk during thymocyte migration and emigration. Nature Reviews Immunology, 2011, 11, 469-477.	22.7	188
53	Hematopoietic progenitor migration to the adult thymus. Annals of the New York Academy of Sciences, 2011, 1217, 122-138.	3.8	76
54	Cutting Edge: Natural Helper Cells Derive from Lymphoid Progenitors. Journal of Immunology, 2011, 187, 5505-5509.	0.8	124

#	Article	IF	CITATIONS
55	T Cell Development Critically Depends on Prethymic Stromal Patched Expression. Journal of Immunology, 2011, 186, 3383-3391.	0.8	15
56	Foxp1 is an essential transcriptional regulator for the generation of quiescent naive T cells during thymocyte development. Blood, 2010, 115, 510-518.	1.4	115
57	There's many a CLP on the path to B. Blood, 2010, 115, 2562-2563.	1.4	1
58	Tâ€cell lineage determination. Immunological Reviews, 2010, 238, 12-22.	6.0	90
59	IL25 elicits a multipotent progenitor cell population that promotes TH2 cytokine responses. Nature, 2010, 464, 1362-1366.	27.8	512
60	Ezrin Is Highly Expressed in Early Thymocytes, but Dispensable for T Cell Development in Mice. PLoS ONE, 2010, 5, e12404.	2.5	8
61	Notch dimerization is required for leukemogenesis and T-cell development. Genes and Development, 2010, 24, 2395-2407.	5.9	76
62	Eliciting the T cell fate with Notch. Seminars in Immunology, 2010, 22, 254-260.	5.6	18
63	CCR7 and CCR9 together recruit hematopoietic progenitors to the adult thymus. Blood, 2010, 115, 1897-1905.	1.4	216
64	Critical Functions for Notch Dimerization In T Cell Transformation Blood, 2010, 116, 3647-3647.	1.4	0
65	Untangling the T branch of the hematopoiesis tree. Current Opinion in Immunology, 2009, 21, 121-126.	5.5	39
66	Complement-dependent T-cell lymphopenia caused by thymocyte deletion of the membrane complement regulator Crry. Blood, 2009, 113, 2684-2694.	1.4	12
67	Progenitor migration to the thymus and T cell lineage commitment. Immunologic Research, 2008, 42, 65-74.	2.9	14
68	Immunology at the University of Pennsylvania. Immunologic Research, 2008, 42, 1-2.	2.9	1
69	The earliest thymic progenitors for T cells possess myeloid lineage potential. Nature, 2008, 452, 764-767.	27.8	386
70	Putting ThPOK in place. Nature Immunology, 2008, 9, 1095-1096.	14.5	5
71	Canonical Notch Signaling Is Dispensable for theÂMaintenance of Adult Hematopoietic Stem Cells. Cell Stem Cell, 2008, 2, 356-366.	11.1	271
72	Deletion of the Developmentally Essential Gene ATR in Adult Mice Leads to Age-Related Phenotypes and Stem Cell Loss. Cell Stem Cell, 2007, 1, 113-126.	11.1	691

#	Article	IF	CITATIONS
73	Commitment and Developmental Potential of Extrathymic and Intrathymic T Cell Precursors: Plenty to Choose from. Immunity, 2007, 26, 678-689.	14.3	244
74	Selective Thymus Settling Regulated by Cytokine and Chemokine Receptors. Journal of Immunology, 2007, 178, 2008-2017.	0.8	167
75	Animal Model of Mitochondrial Dysfunction Generating Macrocytic Anemia and Myelodysplastic Bone Marrow Failure Blood, 2007, 110, 402-402.	1.4	1
76	Notch-dependent T-lineage commitment occurs at extrathymic sites following bone marrow transplantation. Blood, 2006, 107, 3511-3519.	1.4	80
77	Trafficking from the bone marrow to the thymus: a prerequisite for thymopoiesis. Immunological Reviews, 2006, 209, 47-57.	6.0	66
78	From stem cell to T cell: one route or many?. Nature Reviews Immunology, 2006, 6, 117-126.	22.7	125
79	Sialylation regulates peripheral tolerance in CD4+ T cells. International Immunology, 2006, 18, 627-635.	4.0	14
80	Stat5a/b are essential for normal lymphoid development and differentiation. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 1000-1005.	7.1	331
81	The requirement for Notch signaling at the β-selection checkpoint in vivo is absolute and independent of the pre–T cell receptor. Journal of Experimental Medicine, 2006, 203, 2239-2245.	8.5	184
82	Notch signaling controls the generation and differentiation of early T lineage progenitors. Nature Immunology, 2005, 6, 663-670.	14.5	320
83	Closer to the Source: Notch and the Nature of Thymus-Settling Cells. Immunity, 2005, 23, 245-248.	14.3	18
84	Aging and T cell development: Interplay between progenitors and their environment. Seminars in Immunology, 2005, 17, 337-346.	5.6	37
85	Canonical Notch Signaling Is Dispensable for the Maintenance of Adult Hematopoietic Stem Cells Blood, 2005, 106, 267-267.	1.4	42
86	IL-7 Effects on Thymocyte Progenitors Blood, 2005, 106, 3318-3318.	1.4	0
87	Circulating hematopoietic progenitors with T lineage potential. Nature Immunology, 2004, 5, 953-960.	14.5	181
88	Identification of Thymus Settling Progenitors Blood, 2004, 104, 2677-2677.	1.4	0
89	Interleukin-7 Over-Expression Regulates T Cell Versus B Cell Lineage Development in the Thymus Blood, 2004, 104, 3238-3238.	1.4	0
90	Intrathymic and Extrathymic Notch-Dependent T Lineage Checkpoints during Normal Development and after Bone Marrow Transplantation Blood, 2004, 104, 1190-1190.	1.4	0

#	Article	IF	CITATIONS
91	Thymopoiesis independent of common lymphoid progenitors. Nature Immunology, 2003, 4, 168-174.	14.5	489
92	Early T Lineage Progenitors: New Insights, but Old Questions Remain. Journal of Immunology, 2003, 171, 5653-5658.	0.8	70
93	In Vitro Evidence That Cytokine Receptor Signals Are Required for Differentiation of Double Positive Thymocytes into Functionally Mature CD8+ T Cells. Journal of Experimental Medicine, 2003, 197, 475-487.	8.5	125
94	The Earliest Step in B Lineage Differentiation from Common Lymphoid Progenitors Is Critically Dependent upon Interleukin 7. Journal of Experimental Medicine, 2002, 196, 705-711.	8.5	179
95	Peripheral Expression of Self-MHC-II Influences the Reactivity and Self-Tolerance of Mature CD4+ T Cells. Immunity, 2002, 17, 425-436.	14.3	84
96	CD5-mediated inhibition of TCR signaling during intrathymic selection and development does not require the CD5 extracellular domain. European Journal of Immunology, 2002, 32, 1811.	2.9	38
97	CD8 Coreceptor Extinction in Signaled CD4 + CD8 + Thymocytes: Coordinate Roles for Both Transcriptional and Posttranscriptional Regulatory Mechanisms in Developing Thymocytes. Molecular and Cellular Biology, 2000, 20, 3852-3859.	2.3	21
98	Immature Thymocytes Undergoing Receptor Rearrangements Are Resistant to an Atm-Dependent Death Pathway Activated in Mature T Cells by Double-Stranded DNA Breaks. Journal of Experimental Medicine, 2000, 192, 891-898.	8.5	12
99	Programming for cytotoxic effector function occurs concomitantly with CD4 extinction during CD8+ T cell differentiation in the thymus. International Immunology, 2000, 12, 1035-1040.	4.0	6
100	Coreceptor Reversal in the Thymus. Immunity, 2000, 13, 59-71.	14.3	222
101	Response to RAG-Mediated V(D)J Cleavage by NBS1 and gamma-H2AX. Science, 2000, 290, 1962-1964.	12.6	308
102	Positive Selection as a Developmental Progression Initiated by $\hat{I}\pm\hat{I}^2$ TCR Signals that Fix TCR Specificity prior to Lineage Commitment. Immunity, 1999, 10, 301-311.	14.3	29
103	Signals involved in CD4/CD8 lineage commitment: Current concepts and potential mechanisms. Seminars in Immunology, 1999, 11, 273-281.	5.6	20
104	OIP-1, a novel protein that distinguishes early oligodendrocyte precursors. , 1997, 50, 591-604.		1
105	Delayed allograft rejection by T cell receptor Vβ8.1 transgenic mice peripherally tolerized to Mls-1. European Journal of Immunology, 1994, 24, 1710-1713.	2.9	8
106	Inhibition of abnormal T cell development and autoimmunity in gld mice by transgenic T cell receptor β chain. European Journal of Immunology, 1992, 22, 1693-1700.	2.9	10
107	Mechanisms of Autoimmunity in the Context of T-Cell Tolerance: Insights from Natural and Transgenic Animal Model Systems. Immunological Reviews, 1990, 118, 165-192.	6.0	19