S Peter Gary

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4624214/publications.pdf Version: 2024-02-01

S DETED CADY

#	Article	IF	CITATIONS
1	Intermittency and Ion Temperature–Anisotropy Instabilities: Simulation and Magnetosheath Observation. Astrophysical Journal, 2020, 895, 83.	4.5	10
2	Dependence of kinetic plasma waves on ion-to-electron mass ratio and light-to-Alfvén speed ratio. Monthly Notices of the Royal Astronomical Society, 2020, 494, 2905-2911.	4.4	5
3	Particle-in-cell Simulations of Decaying Plasma Turbulence: Linear Instabilities versus Nonlinear Processes in 3D and 2.5D Approximations. Astrophysical Journal, 2020, 901, 160.	4.5	9
4	Dissipation of Kinetic Alfvénic Turbulence as a Function of Ion and Electron Temperature Ratios. Astrophysical Journal, 2019, 882, 29.	4.5	10
5	Superâ€Alfvénic Propagation and Damping of Reconnection Onset Signatures. Journal of Geophysical Research: Space Physics, 2018, 123, 341-349.	2.4	9
6	MMS Observations of Beta-dependent Constraints on Ion Temperature Anisotropy in Earth's Magnetosheath. Astrophysical Journal, 2018, 866, 25.	4.5	21
7	Species Entropies in the Kinetic Range of Collisionless Plasma Turbulence: Particle-in-cell Simulations. Astrophysical Journal, 2018, 859, 110.	4.5	7
8	Particle-in-cell Simulations of Electron and Ion Dissipation by Whistler Turbulence: Variations with Electron β. Astrophysical Journal Letters, 2017, 835, L15.	8.3	10
9	Ion Bernstein instability as a possible source for oxygen ion cyclotron harmonic waves. Journal of Geophysical Research: Space Physics, 2017, 122, 5449-5465.	2.4	22
10	Scalings for the Alfvénâ€cyclotron instability: Linear dispersion theory and hybrid particleâ€inâ€cell simulations. Journal of Geophysical Research: Space Physics, 2017, 122, 464-474.	2.4	7
11	Kinetic Alfvén Turbulence: Electron and Ion Heating by Particle-in-cell Simulations. Astrophysical Journal Letters, 2017, 847, L14.	8.3	28
12	Proton velocity ringâ€driven instabilities and their dependence on the ring speed: Linear theory. Journal of Geophysical Research: Space Physics, 2017, 122, 7891-7906.	2.4	11
13	Hybrid Simulations of Positively and Negatively Charged Pickup Ions and Cyclotron Wave Generation at Europa. Journal of Geophysical Research: Space Physics, 2017, 122, 10408-10420.	2.4	12
14	Ring/Shell Ion Distributions at Geosynchronous Orbit. Journal of Geophysical Research: Space Physics, 2017, 122, 12,055.	2.4	14
15	Generation of Highly Oblique Lower Band Chorus Via Nonlinear Threeâ€Wave Resonance. Geophysical Research Letters, 2017, 44, 9532-9538.	4.0	23
16	Effects of variations in electron thermal velocity on the whistler anisotropy instability: Particle-in-cell simulations. Physics of Plasmas, 2016, 23, .	1.9	10
17	On the generation of double layers from ion- and electron-acoustic instabilities. Physics of Plasmas, 2016, 23, .	1.9	5
18	Ionâ€driven instabilities in the solar wind: Wind observations of 19 March 2005. Journal of Geophysical Research: Space Physics, 2016, 121, 30-41.	2.4	66

#	Article	IF	CITATIONS
19	ON ELECTRON-SCALE WHISTLER TURBULENCE IN THE SOLAR WIND. Astrophysical Journal Letters, 2016, 827, L8.	8.3	49
20	Scalings of Alfvénâ€cyclotron and ion Bernstein instabilities on temperature anisotropy of a ringâ€like velocity distribution in the inner magnetosphere. Journal of Geophysical Research: Space Physics, 2016, 121, 2185-2193.	2.4	32
21	Predicting electromagnetic ion cyclotron wave amplitude from unstable ring current plasma conditions. Journal of Geophysical Research: Space Physics, 2016, 121, 10,954.	2.4	16
22	WHISTLER TURBULENCE HEATING OF ELECTRONS AND IONS: THREE-DIMENSIONAL PARTICLE-IN-CELL SIMULATIONS. Astrophysical Journal, 2016, 816, 102.	4.5	30
23	Turbulent dissipation challenge: a community-driven effort. Journal of Plasma Physics, 2015, 81, .	2.1	42
24	Nonlinear subcyclotron resonance as a formationmechanism for gaps in banded chorus. Geophysical Research Letters, 2015, 42, 3150-3159.	4.0	16
25	WHISTLER TURBULENCE FORWARD CASCADE VERSUS INVERSE CASCADE: THREE-DIMENSIONAL PARTICLE-IN-CELL SIMULATIONS. Astrophysical Journal, 2015, 800, 87.	4.5	13
26	Short-wavelength plasma turbulence and temperature anisotropy instabilities: recent computational progress. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2015, 373, 20140149.	3.4	32
27	Energy dissipation by whistler turbulence: Three-dimensional particle-in-cell simulations. Physics of Plasmas, 2014, 21, .	1.9	22
28	Particle-in-cell simulations of velocity scattering of an anisotropic electron beam by electrostatic and electromagnetic instabilities. Physics of Plasmas, 2014, 21, .	1.9	8
29	Do dispersive waves play a role in collisionless magnetic reconnection?. Physics of Plasmas, 2014, 21, 022113.	1.9	45
30	NONLINEAR AND LINEAR TIMESCALES NEAR KINETIC SCALES IN SOLAR WIND TURBULENCE. Astrophysical Journal, 2014, 790, 155.	4.5	50
31	Electron and ion heating by whistler turbulence: Threeâ€dimensional particleâ€inâ€cell simulations. Geophysical Research Letters, 2014, 41, 8681-8687.	4.0	25
32	How important are the alphaâ€proton relative drift and the electron heat flux for the proton heating of the solar wind in the inner heliosphere?. Journal of Geophysical Research: Space Physics, 2014, 119, 5210-5219.	2.4	30
33	Whistler anisotropy instability: Spectral transfer in a threeâ€dimensional particleâ€inâ€cell simulation. Journal of Geophysical Research: Space Physics, 2014, 119, 1429-1434.	2.4	17
34	Whistler anisotropy instabilities as the source of banded chorus: Van Allen Probes observations and particleâ€inâ€cell simulations. Journal of Geophysical Research: Space Physics, 2014, 119, 8288-8298.	2.4	101
35	Dispersion relation analysis of turbulent magnetic field fluctuations in fast solar wind. Annales Geophysicae, 2013, 31, 1949-1955.	1.6	31
36	TEST FOR WAVEVECTOR ANISOTROPIES IN PLASMA TURBULENCE CASCADES. Astrophysical Journal, 2013, 769, 36.	4.5	11

#	Article	IF	CITATIONS
37	ANALYTIC MODEL OF THE <i>IBEX</i> RIBBON WITH NEUTRAL SOLAR WIND BASED ION PICKUP BEYOND THE HELIOPAUSE. Astrophysical Journal, 2013, 766, 129.	4.5	51
38	Whistler turbulence at variable electron beta: Threeâ€dimensional particleâ€inâ€cell simulations. Journal of Geophysical Research: Space Physics, 2013, 118, 2824-2833.	2.4	42
39	Beta dependence of electron heating in decaying whistler turbulence: Particle-in-cell simulations. Physics of Plasmas, 2012, 19, 012312.	1.9	19
40	FORWARD CASCADE OF WHISTLER TURBULENCE: THREE-DIMENSIONAL PARTICLE-IN-CELL SIMULATIONS. Astrophysical Journal, 2012, 755, 142.	4.5	70
41	INSTABILITY-DRIVEN LIMITS ON HELIUM TEMPERATURE ANISOTROPY IN THE SOLAR WIND: OBSERVATIONS AND LINEAR VLASOV ANALYSIS. Astrophysical Journal, 2012, 748, 137.	4.5	123
42	Alfvén yclotron instability with singly ionized helium: Linear theory. Journal of Geophysical Research, 2012, 117, .	3.3	27
43	Pickup proton instabilities and scattering in the distant solar wind and the outer heliosheath: Hybrid simulations. Journal of Geophysical Research, 2012, 117, .	3.3	29
44	Whistler anisotropy instability with a cold electron component: Linear theory. Journal of Geophysical Research, 2012, 117, .	3.3	18
45	OBSERVATION OF BERNSTEIN WAVES EXCITED BY NEWBORN INTERSTELLAR PICKUP IONS IN THE SOLAR WIND. Astrophysical Journal, 2012, 745, 112.	4.5	25
46	Dispersion relation analysis of solar wind turbulence. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	94
47	Excitation of magnetosonic waves in the terrestrial magnetosphere: Particle-in-cell simulations. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	94
48	Electron-ion Coulomb scattering and the electron Landau damping of Alfvén waves in the solar wind. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	14
49	Excitation of banded whistler waves in the magnetosphere. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	48
50	Whistler turbulence forward cascade: Three-dimensional particle-in-cell simulations. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	36
51	Bernstein instability driven by suprathermal protons in the ring current. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	24
52	EFFECT OF DIFFERENTIAL FLOW OF ALPHA PARTICLES ON PROTON PRESSURE ANISOTROPY INSTABILITIES IN THE SOLAR WIND. Astrophysical Journal, 2011, 742, 41.	4.5	47
53	Whistler anisotropy instability at low electron β: Particle-in-cell simulations. Physics of Plasmas, 2011, 18, .	1.9	56
54	WHISTLER TURBULENCE WAVEVECTOR ANISOTROPIES: PARTICLE-IN-CELL SIMULATIONS. Astrophysical Journal, 2010, 716, 1332-1335.	4.5	28

#	Article	IF	CITATIONS
55	A KINETIC ALFVÉN WAVE CASCADE SUBJECT TO COLLISIONLESS DAMPING CANNOT REACH ELECTRON SCALE IN THE SOLAR WIND AT 1 AU. Astrophysical Journal, 2010, 712, 685-691.	S _{4.5}	73
56	High-speed stream driven inferences of global wave distributions at geosynchronous orbit: relevance to radiation-belt dynamics. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2010, 466, 3351-3362.	2.1	22
57	Wavenumber spectrum of whistler turbulence: Particle-in-cell simulation. Physics of Plasmas, 2010, 17,	1.9	52
58	Relativistic electron scattering by electromagnetic ion cyclotron fluctuations: Test particle simulations. Journal of Geophysical Research, 2010, 115, .	3.3	58
59	Time History of Events and Macroscale Interactions during Substorms observations of a series of hot flow anomaly events. Journal of Geophysical Research, 2010, 115, .	3.3	75
60	Hybrid simulations of the termination shock: Suprathermal ion velocity distributions in the heliosheath. Journal of Geophysical Research, 2010, 115, .	3.3	24
61	Heliosheath fluctuations near the perpendicular termination shock: Twoâ€dimensional hybrid simulations. Journal of Geophysical Research, 2010, 115, .	3.3	3
62	Multiple harmonic ULF waves in the plasma sheet boundary layer: Instability analysis. Journal of Geophysical Research, 2010, 115, .	3.3	36
63	Ion Bernstein instability in the terrestrial magnetosphere: Linear dispersion theory. Journal of Geophysical Research, 2010, 115, .	3.3	74
64	DISSIPATION WAVENUMBERS FOR TURBULENCE IN ELECTRON–POSITRON PLASMAS. Astrophysical Journal, 2009, 701, 1695-1700.	4.5	3
65	On shear viscosity and the Reynolds number of magnetohydrodynamic turbulence in collisionless magnetized plasmas: Coulomb collisions, Landau damping, and Bohm diffusion. Physics of Plasmas, 2009, 16, .	1.9	22
66	Twoâ€dimensional hybrid simulations of superdiffusion at the magnetopause driven by Kelvinâ€Helmholtz instability. Journal of Geophysical Research, 2009, 114, .	3.3	45
67	Energy dissipation and ion heating at the heliospheric termination shock. Journal of Geophysical Research, 2009, 114, .	3.3	28
68	Ion observations from geosynchronous orbit as a proxy for ion cyclotron wave growth during storm times. Journal of Geophysical Research, 2009, 114, .	3.3	66
69	Shortâ€wavelength turbulence in the solar wind: Linear theory of whistler and kinetic Alfvén fluctuations. Journal of Geophysical Research, 2009, 114, .	3.3	113
70	Fluctuations in electron-positron plasmas: Linear theory and implications for turbulence. Physics of Plasmas, 2009, 16, 042104.	1.9	20
71	Cascade of whistler turbulence: Particleâ€inâ€cell simulations. Geophysical Research Letters, 2008, 35, .	4.0	97
72	Perpendicular scattering for electron beams by the electron/electron instability in solar electron bursts. Journal of Geophysical Research, 2008, 113, .	3.3	2

#	Article	IF	CITATIONS
73	Whistler turbulence: Particle-in-cell simulations. Physics of Plasmas, 2008, 15, .	1.9	115
74	Damping of longâ€wavelength kinetic Alfvén fluctuations: Linear theory. Journal of Geophysical Research, 2008, 113, .	3.3	25
75	Hot Solar-Wind Helium: Direct Evidence for Local Heating by Alfvén-Cyclotron Dissipation. Physical Review Letters, 2008, 101, 261103.	7.8	177
76	All whistlers are not created equally: Scattering of strahl electrons in the solar wind via particle-in-cell simulations. Geophysical Research Letters, 2007, 34, .	4.0	38
77	Scattering of suprathermal electrons in the solar wind: ACE observations. Journal of Geophysical Research, 2007, 112, n/a-n/a.	3.3	61
78	Whistler scattering of suprathermal electrons in the solar wind: Particle-in-cell simulations. Journal of Geophysical Research, 2007, 112, n/a-n/a.	3.3	42
79	Broadening of solar wind strahl pitchâ€angles by the electron/electron instability: Particleâ€inâ€cell simulations. Geophysical Research Letters, 2007, 34, .	4.0	36
80	Hybrid simulations of debrisâ $\in\!\!\!\mathbf{a}$ mbient ion interactions in astrophysical explosions. Journal of Geophysical Research, 2007, 112, .	3.3	39
81	Alfvén-cyclotron scattering of solar wind ions: Hybrid simulations. Journal of Geophysical Research, 2006, 111, .	3.3	25
82	Linear theory of electron temperature anisotropy instabilities: Whistler, mirror, and Weibel. Journal of Geophysical Research, 2006, 111, .	3.3	94
83	Solar wind ion scattering by Alfvén-cyclotron fluctuations: ion temperature anisotropies versus relative alpha particle densities. New Journal of Physics, 2006, 8, 17-17.	2.9	11
84	Learning about coronal heating from solar wind observations. Physics of Plasmas, 2005, 12, 056501.	1.9	13
85	Signatures of Alfvén-cyclotron wave-ion scattering: Advanced Composition Explorer (ACE) solar wind observations. Journal of Geophysical Research, 2005, 110, .	3.3	24
86	Electron anisotropy constraint in the magnetosheath: Cluster observations. Geophysical Research Letters, 2005, 32, .	4.0	59
87	Alfvén wave heating of heavy ions in the expanding solar wind: Hybrid simulations. Journal of Geophysical Research, 2005, 110, .	3.3	45
88	Kinetic Alfvén waves: Linear theory and a particle-in-cell simulation. Journal of Geophysical Research, 2004, 109, .	3.3	59
89	Alfvén-cyclotron fluctuations: Linear Vlasov theory. Journal of Geophysical Research, 2004, 109, .	3.3	84
90	Deep Space 1 encounter with Comet 19P/Borrelly: Ion composition measurements by the PEPE mass spectrometer. Geophysical Research Letters, 2003, 30, .	4.0	23

#	Article	IF	CITATIONS
91	Consequences of proton and alpha anisotropies in the solar wind: Hybrid simulations. Journal of Geophysical Research, 2003, 108, .	3.3	51
92	Particle-in-cell simulations of Alfvén-cyclotron wave scattering: Proton velocity distributions. Journal of Geophysical Research, 2003, 108, .	3.3	39
93	Resonant electron firehose instability: Particle-in-cell simulations. Physics of Plasmas, 2003, 10, 3571-3576.	1.9	82
94	Solar Wind Temperature Anisotropies. AIP Conference Proceedings, 2003, , .	0.4	41
95	Wind/SWE observations of firehose constraint on solar wind proton temperature anisotropy. Geophysical Research Letters, 2002, 29, 20-1-20-4.	4.0	237
96	Whistler anisotropy instability: Wave-particle scattering rate. Journal of Geophysical Research, 2002, 107, SMP 18-1.	3.3	20
97	Resonant heating and acceleration of ions in coronal holes driven by cyclotron resonant spectra. Journal of Geophysical Research, 2002, 107, SSH 9-1-SSH 9-9.	3.3	52
98	Signatures of wave-ion interactions in the solar wind: Ulysses observations. Journal of Geophysical Research, 2002, 107, SSH 4-1-SSH 4-7.	3.3	33
99	On the dissipation of magnetic fluctuations in the solar wind. Geophysical Research Letters, 2001, 28, 1347-1350.	4.0	60
100	Helium energetics in the high-latitude solar wind: Ulysses observations. Journal of Geophysical Research, 2001, 106, 5693-5708.	3.3	64
101	Ion distributions in large magnetic holes in the fast solar wind. Journal of Geophysical Research, 2001, 106, 5635-5648.	3.3	63
102	Electromagnetic heavy ion cyclotron instability: Anisotropy constraint in the solar corona. Journal of Geophysical Research, 2001, 106, 10715-10722.	3.3	37
103	Solar wind magnetic fluctuation spectra: Dispersion versus damping. Journal of Geophysical Research, 2001, 106, 8273-8281.	3.3	191
104	Solar cycle variations in the electron heat flux: Ulysses observations. Geophysical Research Letters, 2001, 28, 2169-2172.	4.0	28
105	Proton temperature anisotropy constraint in the solar wind: ACE observations. Geophysical Research Letters, 2001, 28, 2759-2762.	4.0	113
106	Role of electron physics in slow mode shocks. Journal of Geophysical Research, 2001, 106, 25031-25039.	3.3	10
107	Helium ion acceleration and heating by Alfvén/cyclotron fluctuations in the solar wind. Journal of Geophysical Research, 2001, 106, 24955-24963.	3.3	32
108	Constraints on the O[TSUP]+5[/TSUP] Anisotropy in the Solar Corona. Astrophysical Journal, 2001, 547, L175-L178.	4.5	41

#	Article	IF	CITATIONS
109	Alpha/proton magnetosonic instability in the solar wind. Journal of Geophysical Research, 2000, 105, 20989-20996.	3.3	46
110	Observed constraint on proton-proton relative velocities in the solar wind. Geophysical Research Letters, 2000, 27, 53-56.	4.0	80
111	Suprathermal ions and MHD turbulence observed upstream of an interplanetary shock by Advanced Composition Explorer. Journal of Geophysical Research, 2000, 105, 7521-7531.	3.3	12
112	Electron temperature anisotropy instabilities: Computer simulations. Journal of Geophysical Research, 2000, 105, 10751-10759.	3.3	47
113	Electromagnetic alpha/proton instabilities in the solar wind. Geophysical Research Letters, 2000, 27, 1355-1358.	4.0	59
114	Electromagnetic proton cyclotron anisotropy instability: Wave-particle scattering rate. Geophysical Research Letters, 2000, 27, 2457-2459.	4.0	28
115	Electron heat flux constraints in the solar wind. Physics of Plasmas, 1999, 6, 2607-2612.	1.9	47
116	Electromagnetic proton/proton instabilities in the solar wind: Simulations. Journal of Geophysical Research, 1999, 104, 4657-4667.	3.3	82
117	Collisionless dissipation wavenumber: Linear theory. Journal of Geophysical Research, 1999, 104, 6759-6762.	3.3	51
118	Solar wind electrons: Parametric constraints. Journal of Geophysical Research, 1999, 104, 19843-19849.	3.3	30
119	Proton resonant firehose instability: Temperature anisotropy and fluctuating field constraints. Journal of Geophysical Research, 1998, 103, 14567-14574.	3.3	102
120	Proton temperature anisotropy upper bound. Journal of Geophysical Research, 1997, 102, 27159-27169.	3.3	97
121	Whistler instability: Electron anisotropy upper bound. Journal of Geophysical Research, 1996, 101, 10749-10754.	3.3	160
122	Electromagnetic proton cyclotron instability: Interactions with magnetospheric protons. Journal of Geophysical Research, 1995, 100, 21961-21972.	3.3	84
123	A limited closure relation for anisotropic plasmas from the Earth's magnetosheath*. Physics of Plasmas, 1994, 1, 1676-1683.	1.9	54
124	Magnetic spectral signatures in the Earth's magnetosheath and plasma depletion layer. Journal of Geophysical Research, 1994, 99, 5877.	3.3	229
125	Two-dimensional simulations of ion anisotropy instabilities in the magnetosheath. Journal of Geophysical Research, 1994, 99, 11141.	3.3	52
126	The proton cyclotron instability and the anisotropy/ \hat{I}^2 inverse correlation. Journal of Geophysical Research, 1994, 99, 5903.	3.3	125

#	Article	IF	CITATIONS
127	The ion cyclotron anisotropy instability and the inverse correlation between proton anisotropy and proton beta. Journal of Geophysical Research, 1994, 99, 11297.	3.3	110
128	Inverse correlations between the ion temperature anisotropy and plasma beta in the Earth's quasi-parallel magnetosheath. Journal of Geophysical Research, 1994, 99, 14931.	3.3	73
129	Regulation of the solar wind electron heat flux from 1 to 5 AU: Ulysses observations. Journal of Geophysical Research, 1994, 99, 23401.	3.3	96
130	Hot proton anisotropies and cool proton temperatures in the outer magnetosphere. Journal of Geophysical Research, 1994, 99, 23603.	3.3	75
131	Ion cyclotron anisotropy instabilities in the magnetosheath: Theory and simulations. Journal of Geophysical Research, 1993, 98, 3963-3971.	3.3	48
132	Simulations of ion cyclotron anisotropy instabilities in the terrestrial magnetosheath. Journal of Geophysical Research, 1993, 98, 9171-9179.	3.3	44
133	The mirror and ion cyclotron anisotropy instabilities. Journal of Geophysical Research, 1992, 97, 8519-8529.	3.3	215
134	Mirror and ion cyclotron anisotropy instabilities in the magnetosheath. Journal of Geophysical Research, 1992, 97, 19421-19432.	3.3	59
135	Kinetic properties of mirror waves in magnetosheath plasmas. Geophysical Research Letters, 1992, 19, 1331-1334.	4.0	32
136	Computer simulations of cometaryâ€ion/ion instabilities and wave growth. Journal of Geophysical Research, 1989, 94, 3513-3525.	3.3	62
137	Electromagnetic ion instabilities in a cometary environment. Journal of Geophysical Research, 1988, 93, 235-241.	3.3	92
138	The ion-ion acoustic instability. Journal of Plasma Physics, 1987, 37, 45-61.	2.1	94
139	Plasma Instabilities in the Terrestrial Magnetosphere: A Review of Recent Theoretical Research. Physica Scripta, 1987, T18, 179-187.	2.5	2
140	The development of shellâ€like distributions from newborn cometary ions. Geophysical Research Letters, 1986, 13, 1364-1367.	4.0	77
141	Low-frequency waves in a high-beta collisionless plasma: polarization, compressibility and helicity. Journal of Plasma Physics, 1986, 35, 431-447.	2.1	116
142	The secondâ€order theory of electromagnetic hot ion beam instabilities. Journal of Geophysical Research, 1985, 90, 65-72.	3.3	46
143	Electromagnetic ion beam instabilities. Physics of Fluids, 1984, 27, 1852.	1.4	231
144	Linear density drift instabilities in very low beta plasmas: a different approach. Journal of Plasma Physics, 1983, 30, 75-94.	2.1	6

#	Article	IF	CITATIONS
145	Collisionless electrostatic interchange instabilities. Journal of Plasma Physics, 1982, 28, 551-564.	2.1	14
146	The source of proton anisotropy in the highâ€ s peed solar wind. Journal of Geophysical Research, 1981, 86, 541-546.	3.3	69
147	Nonlinear theory of the Weibel instability. Journal of Plasma Physics, 1979, 21, 287-300.	2.1	28
148	A second-order theory for kâ¥B0 electromagnetic instabilities. Physics of Fluids, 1978, 21, 72.	1.4	53
149	Electromagnetic instabilities driven by unequal proton beams in the solar wind. Journal of Geophysical Research, 1976, 81, 2743-2749.	3.3	87
150	Electromagnetic Ion-Beam Instabilities in the Solar Wind. Physical Review Letters, 1975, 35, 667-670.	7.8	64
151	Electron heat flux instabilities in the solar wind. Geophysical Research Letters, 1975, 2, 79-82.	4.0	78
152	Evidence for local ion heating in solar wind high speed streams. Geophysical Research Letters, 1975, 2, 373-375.	4.0	74
153	Solar wind electrons. Journal of Geophysical Research, 1975, 80, 4181-4196.	3.3	651
154	Heat flux instabilities in the solar wind. Journal of Geophysical Research, 1975, 80, 4197-4203.	3.3	134
155	Anomalous Resistivity Due to Electrostatic Turbulence, Physical Review Letters, 1971, 26, 1097-1100.	7.8	41