Bradley S Moore

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4622706/publications.pdf

Version: 2024-02-01

182 papers 20,411 citations

14644 66 h-index 136 g-index

195 all docs

195
docs citations

195 times ranked 17047 citing authors

#	Article	IF	CITATIONS
1	A biosynthetic pathway to aromatic amines that uses glycyl-tRNA as nitrogen donor. Nature Chemistry, 2022, 14, 71-77.	6.6	23
2	A Diazo-Hooker Reaction, Inspired by the Biosynthesis of Azamerone. Organic Letters, 2022, 24, 490-495.	2.4	5
3	Domoic acid biosynthesis in the red alga <i>Chondria armata $\langle i \rangle$ suggests a complex evolutionary history for toxin production. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .</i>	3.3	16
4	Harnessing <i>ortho</i> -Quinone Methides in Natural Product Biosynthesis and Biocatalysis. Journal of Natural Products, 2022, 85, 688-701.	1.5	20
5	From Tryptophan to Toxin: Nature's Convergent Biosynthetic Strategy to Aetokthonotoxin. Journal of the American Chemical Society, 2022, 144, 2861-2866.	6.6	31
6	Enzymatic assembly of the salinosporamide \hat{l}^3 -lactam- \hat{l}^2 -lactone anticancer warhead. Nature Chemical Biology, 2022, 18, 538-546.	3.9	16
7	Biosynthesis of Guanitoxin Enables Global Environmental Detection in Freshwater Cyanobacteria. Journal of the American Chemical Society, 2022, 144, 9372-9379.	6.6	25
8	Ancient plant-like terpene biosynthesis in corals. Nature Chemical Biology, 2022, 18, 664-669.	3.9	40
9	Bioinspired Green Science and Technology Symposium in NYC. Matter, 2022, 5, 1980-1984.	5.0	1
10	Cryptic halogenation reactions in natural product biosynthesis. Natural Product Reports, 2021, 38, 1760-1774.	5.2	16
11	A community resource for paired genomic and metabolomic data mining. Nature Chemical Biology, 2021, 17, 363-368.	3.9	81
12	Discovery and Biosynthesis of Tetrachlorizine Reveals Enzymatic Benzylic Dehydrogenation via an <i>ortho</i> -Quinone Methide. Journal of the American Chemical Society, 2021, 143, 3682-3686.	6.6	10
13	Phylogenetic analysis of the salinipostin \hat{I}^3 -butyrolactone gene cluster uncovers new potential for bacterial signalling-molecule diversity. Microbial Genomics, 2021, 7, .	1.0	8
14	Mining genomes to illuminate the specialized chemistry of life. Nature Reviews Genetics, 2021, 22, 553-571.	7.7	111
15	Co-occurrence of enzyme domains guides the discovery of an oxazolone synthetase. Nature Chemical Biology, 2021, 17, 794-799.	3.9	13
16	Marine and Anthropogenic Bromopyrroles Alter Cellular Ca ²⁺ Dynamics of Murine Cortical Neuronal Networks by Targeting the Ryanodine Receptor and Sarco/Endoplasmic Reticulum Ca ²⁺ -ATPase. Environmental Science & Environmental	4.6	3
17	Genome mining methods to discover bioactive natural products. Natural Product Reports, 2021, 38, 2100-2129.	5.2	61
18	Cariogenic <i>Streptococcus mutans</i> Produces Tetramic Acid Strain-Specific Antibiotics That Impair Commensal Colonization. ACS Infectious Diseases, 2020, 6, 563-571.	1.8	40

#	Article	IF	CITATIONS
19	Pass-back chain extension expands multimodular assembly line biosynthesis. Nature Chemical Biology, 2020, 16, 42-49.	3.9	28
20	Enzymes in natural product total synthesis. Natural Product Reports, 2020, 37, 1292-1293.	5. 2	8
21	Expansion of Gamma-Butyrolactone Signaling Molecule Biosynthesis to Phosphotriester Natural Products. ACS Chemical Biology, 2020, 15, 3253-3261.	1.6	8
22	Biosynthesis of marine toxins. Current Opinion in Chemical Biology, 2020, 59, 119-129.	2.8	20
23	Genetic examination of the marine bacterium <i>Pseudoalteromonas luteoviolacea</i> and effects of its metamorphosisâ€inducing factors. Environmental Microbiology, 2020, 22, 4689-4701.	1.8	13
24	Algal neurotoxin biosynthesis repurposes the terpene cyclase structural fold into an $\langle i\rangle N\langle i\rangle$ -prenyltransferase. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12799-12805.	3.3	13
25	Comparative Genomics and Metabolomics in the Genus Nocardia. MSystems, 2020, 5, .	1.7	39
26	Nonlinear Biosynthetic Assembly of Alpiniamide by a Hybrid <i>cis</i> /ci>/trans-AT PKS-NRPS. ACS Chemical Biology, 2020, 15, 1067-1077.	1.6	13
27	Meroterpenoid natural products from <i>Streptomyces</i> bacteria – the evolution of chemoenzymatic syntheses. Natural Product Reports, 2020, 37, 1334-1366.	5.2	45
28	Site-Directed Mutagenesis of Large Biosynthetic Gene Clusters <i>via</i> Oligonucleotide Recombineering and CRISPR/Cas9 Targeting. ACS Synthetic Biology, 2020, 9, 1917-1922.	1.9	6
29	A genomic view of trophic and metabolic diversity in clade-specific Lamellodysidea sponge microbiomes. Microbiome, 2020, 8, 97.	4.9	38
30	Guanitoxin, re-naming a cyanobacterial organophosphate toxin. Harmful Algae, 2020, 92, 101737.	2.2	54
31	The value of universally available raw NMR data for transparency, reproducibility, and integrity in natural product research. Natural Product Reports, 2019, 36, 35-107.	5.2	92
32	Molecular and biochemical basis for the loss of bioluminescence in the dinoflagellate Noctiluca scintillans along the west coast of the U.S.A Limnology and Oceanography, 2019, 64, 2709-2724.	1.6	9
33	Comparative Genomics of Cyanobacterial Symbionts Reveals Distinct, Specialized Metabolism in Tropical $\langle i \rangle$ Dysideidae $\langle i \rangle$ Sponges. MBio, 2019, 10, .	1.8	31
34	Genetic platforms for heterologous expression of microbial natural products. Natural Product Reports, 2019, 36, 1313-1332.	5.2	109
35	Bacterial Tetrabromopyrrole Debrominase Shares a Reductive Dehalogenation Strategy with Human Thyroid Deiodinase. Biochemistry, 2019, 58, 5329-5338.	1.2	13
36	Scalable Biosynthesis of the Seaweed Neurochemical, Kainic Acid. Angewandte Chemie, 2019, 131, 8542-8545.	1.6	4

#	Article	IF	Citations
37	Scalable Biosynthesis of the Seaweed Neurochemical, Kainic Acid. Angewandte Chemie - International Edition, 2019, 58, 8454-8457.	7.2	49
38	Refactoring the Cryptic Streptophenazine Biosynthetic Gene Cluster Unites Phenazine, Polyketide, and Nonribosomal Peptide Biochemistry. Cell Chemical Biology, 2019, 26, 724-736.e7.	2.5	48
39	Synthesis, bioactivity, and enzymatic modification of antibacterial thiotetromycin derivatives. Organic and Biomolecular Chemistry, 2019, 17, 3416-3423.	1.5	5
40	Biosynthesis of <scp>l</scp> â€4â€Chlorokynurenine, an Antidepressant Prodrug and a Nonâ€Proteinogenic Amino Acid Found in Lipopeptide Antibiotics. Angewandte Chemie - International Edition, 2019, 58, 8394-8399.	7.2	31
41	Biosynthesis of l â€4â€Chlorokynurenine, an Antidepressant Prodrug and a Nonâ€Proteinogenic Amino Acid Found in Lipopeptide Antibiotics. Angewandte Chemie, 2019, 131, 8482.	1.6	5
42	Direct cloning and heterologous expression of natural product biosynthetic gene clusters by transformation-associated recombination. Methods in Enzymology, 2019, 621, 87-110.	0.4	37
43	Enzymatic Cascade Reactions in Biosynthesis. Angewandte Chemie - International Edition, 2019, 58, 6846-6879.	7.2	150
44	Enzymkaskadenreaktionen in der Biosynthese. Angewandte Chemie, 2019, 131, 6918-6952.	1.6	22
45	Macrocyclic colibactin induces DNA double-strand breaks via copper-mediated oxidative cleavage. Nature Chemistry, 2019, 11, 880-889.	6.6	60
46	Diversity and distribution of the <i>bmp</i> gene cluster and its Polybrominated products in the genus <i>Pseudoalteromonas</i> . Environmental Microbiology, 2019, 21, 1575-1585.	1.8	15
47	Insights into Thiotemplated Pyrrole Biosynthesis Gained from the Crystal Structure of Flavin-Dependent Oxidase in Complex with Carrier Protein. Biochemistry, 2019, 58, 918-929.	1.2	12
48	Pangenomic comparison of globally distributed Poribacteria associated with sponge hosts and marine particles. ISME Journal, 2019, 13, 468-481.	4.4	63
49	Enzymatic control of dioxygen binding and functionalization of the flavin cofactor. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4909-4914.	3.3	49
50	Organohalogens Naturally Biosynthesized in Marine Environments and Produced as Disinfection Byproducts Alter Sarco/Endoplasmic Reticulum Ca ²⁺ Dynamics. Environmental Science & Environment	4.6	17
51	Natural Product Reports 35 years on. Natural Product Reports, 2018, 35, 6-7.	5.2	2
52	Biosynthesis of the Antibiotic Bicyclomycin in Soil and Pathogenic Bacteria. Biochemistry, 2018, 57, 897-898.	1.2	4
53	Asymmetric Alkene and Arene Halofunctionalization Reactions in Meroterpenoid Biosynthesis. Synlett, 2018, 29, 401-409.	1.0	19
54	Function-related replacement of bacterial siderophore pathways. ISME Journal, 2018, 12, 320-329.	4.4	66

#	Article	IF	CITATIONS
55	Isolation and structure elucidation of lipopeptide antibiotic taromycin B from the activated taromycin biosynthetic gene cluster. Journal of Antibiotics, 2018, 71, 333-338.	1.0	59
56	Total Enzyme Syntheses of Napyradiomycins A1 and B1. Journal of the American Chemical Society, 2018, 140, 17840-17845.	6.6	39
57	Biosynthesis of the neurotoxin domoic acid in a bloom-forming diatom. Science, 2018, 361, 1356-1358.	6.0	124
58	The chemical cue tetrabromopyrrole induces rapid cellular stress and mortality in phytoplankton. Scientific Reports, 2018, 8, 15498.	1.6	24
59	StrukturaufklŤıng von Spurenkomponenten durch Kombination von GC/MS, GC/IR, DFT‧imulationen und Synthese – Salinilactone, neuartige bicyclische Lactone aus <i>Salinispora</i> Bakterien. Angewandte Chemie, 2018, 130, 15137-15141.	1.6	2
60	Structural Elucidation of Trace Components Combining GC/MS, GC/IR, DFTâ€Calculation and Synthesisâ€"Salinilactones, Unprecedented Bicyclic Lactones from ⟨i>Salinispora⟨i> Bacteria. Angewandte Chemie - International Edition, 2018, 57, 14921-14925.	7.2	28
61	Total Synthesis Establishes the Biosynthetic Pathway to the Naphterpin and Marinone Natural Products. Angewandte Chemie, 2018, 130, 11175-11180.	1.6	11
62	Total Synthesis Establishes the Biosynthetic Pathway to the Naphterpin and Marinone Natural Products. Angewandte Chemie - International Edition, 2018, 57, 11009-11014.	7.2	41
63	Preparation and Characterization of Tetrabromopyrrole Debrominase From Marine Proteobacteria. Methods in Enzymology, 2018, 605, 253-265.	0.4	3
64	Characterization and Biochemical Assays of Streptomyces Vanadium-Dependent Chloroperoxidases. Methods in Enzymology, 2018, 604, 405-424.	0.4	22
65	Engineering Salinispora tropica for heterologous expression of natural product biosynthetic gene clusters. Applied Microbiology and Biotechnology, 2018, 102, 8437-8446.	1.7	24
66	Preface. Methods in Enzymology, 2018, 604, xv-xvi.	0.4	0
67	Preface. Methods in Enzymology, 2018, 605, xv-xvi.	0.4	0
68	Enzymatic Halogenation and Dehalogenation Reactions: Pervasive and Mechanistically Diverse. Chemical Reviews, 2017, 117, 5619-5674.	23.0	281
69	Minimization of the Thiolactomycin Biosynthetic Pathway Reveals that the Cytochrome P450 Enzyme TlmF Is Required for Fiveâ€Membered Thiolactone Ring Formation. ChemBioChem, 2017, 18, 1072-1076.	1.3	18
70	PCR-Independent Method of Transformation-Associated Recombination Reveals the Cosmomycin Biosynthetic Gene Cluster in an Ocean Streptomycete. Journal of Natural Products, 2017, 80, 1200-1204.	1.5	22
71	Metagenomic discovery of polybrominated diphenyl ether biosynthesis by marine sponges. Nature Chemical Biology, 2017, 13, 537-543.	3.9	141
72	Effects of Actinomycete Secondary Metabolites on Sediment Microbial Communities. Applied and Environmental Microbiology, 2017, 83, .	1.4	44

#	Article	IF	CITATIONS
73	Enzymatic Câ^'H Oxidation–Amidation Cascade in the Production of Natural and Unnatural Thiotetronate Antibiotics with Potentiated Bioactivity. Angewandte Chemie, 2017, 129, 12402-12407.	1.6	5
74	Broad-Host-Range Expression Reveals Native and Host Regulatory Elements That Influence Heterologous Antibiotic Production in Gram-Negative Bacteria. MBio, 2017, 8, .	1.8	39
75	Genomic insights into specialized metabolism in the marine actinomycete <i>Salinispora</i> Environmental Microbiology, 2017, 19, 3660-3673.	1.8	69
76	A unifying paradigm for naphthoquinone-based meroterpenoid (bio)synthesis. Nature Chemistry, 2017, 9, 1235-1242.	6.6	65
77	Enzymatic Câ^'H Oxidationâ€"Amidation Cascade in the Production of Natural and Unnatural Thiotetronate Antibiotics with Potentiated Bioactivity. Angewandte Chemie - International Edition, 2017, 56, 12234-12239.	7.2	15
78	Comparative transcriptomics as a guide to natural product discovery and biosynthetic gene cluster functionality. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E11121-E11130.	3.3	94
79	Editorial: Are natural products the solution to antimicrobial resistance?. Natural Product Reports, 2017, 34, 685-686.	5.2	25
80	Indexing the Pseudomonas specialized metabolome enabled the discovery of poaeamide B and the bananamides. Nature Microbiology, 2017, 2, 16197.	5.9	121
81	Prioritizing Natural Product Diversity in a Collection of 146 Bacterial Strains Based on Growth and Extraction Protocols. Journal of Natural Products, 2017, 80, 588-597.	1.5	105
82	A Bacterial Quorum-Sensing Precursor Induces Mortality in the Marine Coccolithophore, Emiliania huxleyi. Frontiers in Microbiology, 2016, 7, 59.	1.5	54
83	Sequencing rare marine actinomycete genomes reveals high density of unique natural product biosynthetic gene clusters. Microbiology (United Kingdom), 2016, 162, 2075-2086.	0.7	61
84	Family-wide Structural Characterization and Genomic Comparisons Decode the Diversity-oriented Biosynthesis of Thalassospiramides by Marine Proteobacteria. Journal of Biological Chemistry, 2016, 291, 27228-27238.	1.6	11
85	Enzymatic Reductive Dehalogenation Controls the Biosynthesis of Marine Bacterial Pyrroles. Journal of the American Chemical Society, 2016, 138, 13167-13170.	6.6	34
86	Coupled Biosynthesis of Volatiles and Salinosporamideâ€A in <i>Salinispora tropica</i> . ChemBioChem, 2016, 17, 1978-1985.	1.3	17
87	Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nature Biotechnology, 2016, 34, 828-837.	9.4	2,802
88	Divergent biosynthesis yields a cytotoxic aminomalonate-containing precolibactin. Nature Chemical Biology, 2016, 12, 773-775.	3.9	74
89	Biosynthetic Pathway Connects Cryptic Ribosomally Synthesized Posttranslationally Modified Peptide Genes with Pyrroloquinoline Alkaloids. Cell Chemical Biology, 2016, 23, 1504-1514.	2.5	49
90	Microbial and biochemical basis of a Fusarium wilt-suppressive soil. ISME Journal, 2016, 10, 119-129.	4.4	355

#	Article	IF	Citations
91	Unusual flavoenzyme catalysis in marine bacteria. Current Opinion in Chemical Biology, 2016, 31, 31-39.	2.8	57
92	Recent advances in the biosynthesis of unusual polyketide synthase substrates. Natural Product Reports, 2016, 33, 150-161.	5.2	72
93	A Peptidylâ€Transesterifying Typeâ€I Thioesterase in Salinamide Biosynthesis. Angewandte Chemie - International Edition, 2016, 55, 364-367.	7.2	38
94	Biosynthesis of coral settlement cue tetrabromopyrrole in marine bacteria by a uniquely adapted brominase–thioesterase enzyme pair. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3797-3802.	3. 3	81
95	Salinipyrone and Pacificanone Are Biosynthetic Byâ€products of the Rosamicin Polyketide Synthase. ChemBioChem, 2015, 16, 1443-1447.	1.3	19
96	Mechanism of Action of Thalassospiramides, A New Class of Calpain Inhibitors. Scientific Reports, 2015, 5, 8783.	1.6	16
97	Complexity of Naturally Produced Polybrominated Diphenyl Ethers Revealed via Mass Spectrometry. Environmental Science & Enviro	4.6	47
98	The marine actinomycete genus Salinispora: a model organism for secondary metabolite discovery. Natural Product Reports, 2015, 32, 738-751.	5.2	155
99	Sioxanthin, a novel glycosylated carotenoid, reveals an unusual subclustered biosynthetic pathway. Environmental Microbiology, 2015, 17, 2158-2171.	1.8	49
100	Biochemical Establishment and Characterization of EncM's Flavin-N5-oxide Cofactor. Journal of the American Chemical Society, 2015, 137, 8078-8085.	6.6	80
101	Directed natural product biosynthesis gene cluster capture and expression in the model bacterium Bacillus subtilis. Scientific Reports, 2015, 5, 9383.	1.6	95
102	Molecular Networking and Pattern-Based Genome Mining Improves Discovery of Biosynthetic Gene Clusters and their Products from Salinispora Species. Chemistry and Biology, 2015, 22, 460-471.	6.2	150
103	Identification of Thiotetronic Acid Antibiotic Biosynthetic Pathways by Target-directed Genome Mining. ACS Chemical Biology, 2015, 10, 2841-2849.	1.6	238
104	Minimum Information about a Biosynthetic Gene cluster. Nature Chemical Biology, 2015, 11, 625-631.	3.9	715
105	Reinvigorating natural product combinatorial biosynthesis with synthetic biology. Nature Chemical Biology, 2015, 11, 649-659.	3.9	175
106	Chemoenzymatic Synthesis of Acyl Coenzyme A Substrates Enables <i>in Situ</i> Labeling of Small Molecules and Proteins. Organic Letters, 2015, 17, 4452-4455.	2.4	33
107	Direct Capture and Heterologous Expression of <i>Salinispora</i> Natural Product Genes for the Biosynthesis of Enterocin. Journal of Natural Products, 2015, 78, 539-542.	1.5	60
108	Targeted Capture and Heterologous Expression of the <i>Pseudoalteromonas</i> Alterochromide Gene Cluster in <i>Escherichia coli</i> Represents a Promising Natural Product Exploratory Platform. ACS Synthetic Biology, 2015, 4, 414-420.	1.9	98

#	Article	IF	Citations
109	Digging for biosynthetic dark matter. ELife, 2015, 4, e06453.	2.8	7
110	Direct cloning and refactoring of a silent lipopeptide biosynthetic gene cluster yields the antibiotic taromycin A. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 1957-1962.	3.3	403
111	Non-stick natural products. Nature Chemistry, 2014, 6, 10-12.	6.6	2
112	Automated Genome Mining of Ribosomal Peptide Natural Products. ACS Chemical Biology, 2014, 9, 1545-1551.	1.6	133
113	Fungal polyketide engineering comes of age. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 12278-12279.	3.3	6
114	NRPquest: Coupling Mass Spectrometry and Genome Mining for Nonribosomal Peptide Discovery. Journal of Natural Products, 2014, 77, 1902-1909.	1.5	81
115	Oneâ∈Pot Enzymatic Synthesis of Merochlorinâ€A and B. Angewandte Chemie - International Edition, 2014, 53, 11019-11022.	7.2	85
116	Antileukemic Activity and Mechanism of Drug Resistance to the Marine <i>Salinispora tropica</i> Proteasome Inhibitor Salinosporamide A (Marizomib). Molecular Pharmacology, 2014, 86, 12-19.	1.0	39
117	Enzyme Inhibition by Hydroamination: Design and Mechanism of a Hybrid Carmaphycin-Syringolin Enone Proteasome Inhibitor. Chemistry and Biology, 2014, 21, 782-791.	6.2	27
118	Enzymatic Synthesis of Polybrominated Dioxins from the Marine Environment. ACS Chemical Biology, 2014, 9, 1980-1984.	1.6	31
119	A Multitasking Vanadiumâ€Dependent Chloroperoxidase as an Inspiration for the Chemical Synthesis of the Merochlorins. Angewandte Chemie - International Edition, 2014, 53, 11023-11026.	7.2	67
120	Biosynthesis of polybrominated aromatic organic compounds by marine bacteria. Nature Chemical Biology, 2014, 10, 640-647.	3.9	246
121	MS/MS-based networking and peptidogenomics guided genome mining revealed the stenothricin gene cluster in Streptomyces roseosporus. Journal of Antibiotics, 2014, 67, 99-104.	1.0	64
122	Genetic Basis for the Biosynthesis of the Pharmaceutically Important Class of Epoxyketone Proteasome Inhibitors. ACS Chemical Biology, 2014, 9, 301-309.	1.6	51
123	Glycogenomics as a mass spectrometry-guided genome-mining method for microbial glycosylated molecules. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E4407-16.	3.3	101
124	Flavin-mediated dual oxidation controls an enzymatic Favorskii-type rearrangement. Nature, 2013, 503, 552-556.	13.7	147
125	Biosynthetic Multitasking Facilitates Thalassospiramide Structural Diversity in Marine Bacteria. Journal of the American Chemical Society, 2013, 135, 1155-1162.	6.6	55
126	Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Natural Product Reports, 2013, 30, 108-160.	5.2	1,692

#	Article	IF	Citations
127	Structures and Comparative Characterization of Biosynthetic Gene Clusters for Cyanosporasides, Enediyne-Derived Natural Products from Marine Actinomycetes. Journal of the American Chemical Society, 2013, 135, 4171-4174.	6.6	73
128	Bioactivityâ€Guided Genome Mining Reveals the Lomaiviticin Biosynthetic Gene Cluster in <i>Salinispora tropica</i> . ChemBioChem, 2013, 14, 955-962.	1.3	82
129	Flavin-Linked Oxidase Catalyzes Pyrrolizine Formation of Dichloropyrrole-Containing Polyketide Extender Unit in ChlorizidineÂA. Journal of the American Chemical Society, 2013, 135, 18032-18035.	6.6	50
130	MS/MS networking guided analysis of molecule and gene cluster families. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E2611-20.	3.3	250
131	Iron acquisition in the marine actinomycete genus <i>Salinispora</i> ii>is controlled by the desferrioxamine family of siderophores. FEMS Microbiology Letters, 2012, 335, 95-103.	0.7	36
132	Bacterial Biosynthesis and Maturation of the Didemnin Anti-cancer Agents. Journal of the American Chemical Society, 2012, 134, 8625-8632.	6.6	155
133	Beyond ethylmalonyl-CoA: The functional role of crotonyl-CoAcarboxylase/reductase homologs in expanding polyketide diversity. Natural Product Reports, 2012, 29, 72-86.	5.2	128
134	Merochlorins A–D, Cyclic Meroterpenoid Antibiotics Biosynthesized in Divergent Pathways with Vanadium-Dependent Chloroperoxidases. Journal of the American Chemical Society, 2012, 134, 11988-11991.	6.6	181
135	Flavoenzyme-Catalyzed Atropo-Selective <i>N,C</i> Bipyrrole Homocoupling in Marinopyrrole Biosynthesis. Journal of the American Chemical Society, 2012, 134, 12434-12437.	6.6	83
136	Mass spectral molecular networking of living microbial colonies. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E1743-52.	3.3	804
137	Lessons from the Past and Charting the Future of Marine Natural Products Drug Discovery and Chemical Biology. Chemistry and Biology, 2012, 19, 85-98.	6.2	523
138	Biosynthesis of the Allylmalonyl-CoA Extender Unit for the FK506 Polyketide Synthase Proceeds through a Dedicated Polyketide Synthase and Facilitates the Mutasynthesis of Analogues. Journal of the American Chemical Society, 2011, 133, 976-985.	6.6	143
139	Discovery and Assembly-Line Biosynthesis of the Lymphostin Pyrroloquinoline Alkaloid Family of mTOR Inhibitors in Salinispora Bacteria. Journal of the American Chemical Society, 2011, 133, 13311-13313.	6.6	70
140	Structure and Biosynthesis of the Marine Streptomycete Ansamycin Ansalactam A and Its Distinctive Branched Chain Polyketide Extender Unit. Journal of the American Chemical Society, 2011, 133, 1971-1977.	6.6	95
141	A sea of biosynthesis: marine natural products meet the molecular age. Natural Product Reports, 2011, 28, 411-428.	5.2	112
142	A mass spectrometry–guided genome mining approach for natural product peptidogenomics. Nature Chemical Biology, 2011, 7, 794-802.	3.9	329
143	A Stereoselective Vanadium-Dependent Chloroperoxidase in Bacterial Antibiotic Biosynthesis. Journal of the American Chemical Society, 2011, 133, 4268-4270.	6.6	109
144	Bacterial Self-Resistance to the Natural Proteasome Inhibitor Salinosporamide A. ACS Chemical Biology, 2011, 6, 1257-1264.	1.6	48

#	Article	IF	CITATIONS
145	The Discovery of Salinosporamide K from the Marine Bacterium "⟨i⟩Salinispora pacifica⟨ i⟩―by Genome Mining Gives Insight into Pathway Evolution. ChemBioChem, 2011, 12, 61-64.	1.3	68
146	Inside Cover: The Discovery of Salinosporamide K from the Marine Bacterium "Salinispora pacifica―by Genome Mining Gives Insight into Pathway Evolution (ChemBioChem 1/2011). ChemBioChem, 2011, 12, 2-2.	1.3	0
147	Salinosporamide Natural Products: Potent 20 S Proteasome Inhibitors as Promising Cancer Chemotherapeutics. Angewandte Chemie - International Edition, 2010, 49, 9346-9367.	7.2	214
148	Engineering Fluorometabolite Production: Fluorinase Expression in <i>Salinispora tropica</i> Yields Fluorosalinosporamide. Journal of Natural Products, 2010, 73, 378-382.	1.5	120
149	Prephenate Decarboxylases: A New Prephenate-Utilizing Enzyme Family That Performs Nonaromatizing Decarboxylation en Route to Diverse Secondary Metabolites. Biochemistry, 2010, 49, 9021-9023.	1.2	31
150	Shared Biosynthesis of the Saliniketals and Rifamycins in <i>Salinispora arenicola</i> is Controlled by the <i>sare1259</i> -Encoded Cytochrome P450. Journal of the American Chemical Society, 2010, 132, 12757-12765.	6.6	60
151	Novel transformations in the biosynthesis of the marineâ€derived antibiotic marinopyrrole. FASEB Journal, 2010, 24, 908.3.	0.2	O
152	Exploring the Chemistry and Biology of Vanadium-dependent Haloperoxidases. Journal of Biological Chemistry, 2009, 284, 18577-18581.	1.6	197
153	Exploration and engineering of biosynthetic pathways in the marine actinomycete Salinispora tropica. Pure and Applied Chemistry, 2009, 81, 1075-1084.	0.9	17
154	Biosynthesis of the salinosporamide A polyketide synthase substrate chloroethylmalonyl-coenzyme A from <i>S</i> -adenosyl- <scp>l</scp> -methionine. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 12295-12300.	3.3	169
155	Mechanistic Insights into Water Activation in SAM Hydroxide Adenosyltransferase (dufâ€62). ChemBioChem, 2009, 10, 2455-2459.	1.3	16
156	Formation of the Pyridazine Natural Product Azamerone by Biosynthetic Rearrangement of an Aryl Diazoketone. Angewandte Chemie - International Edition, 2009, 48, 767-770.	7.2	67
157	Genomic islands link secondary metabolism to functional adaptation in marine Actinobacteria. ISME Journal, 2009, 3, 1193-1203.	4.4	175
158	In Vitro Biosynthesis of Unnatural Enterocin and Wailupemycin Polyketides. Journal of Natural Products, 2009, 72, 469-472.	1.5	43
159	Function-Oriented Biosynthesis of \hat{l}^2 -Lactone Proteasome Inhibitors in <i>Salinispora tropica</i> Journal of Medicinal Chemistry, 2009, 52, 6163-6167.	2.9	70
160	Genomic basis for natural product biosynthetic diversity in the actinomycetes. Natural Product Reports, 2009, 26, 1362.	5 . 2	645
161	<i>S</i> â€Adenosylâ€ <scp>L</scp> â€Methionine Hydrolase (Adenosineâ€Forming), a Conserved Bacterial and Archeal Protein Related to SAMâ€Dependent Halogenases. ChemBioChem, 2008, 9, 2215-2219.	1.3	27
162	Mutasynthesis of Fluorosalinosporamide, a Potent and Reversible Inhibitor of the Proteasome. Angewandte Chemie - International Edition, 2008, 47, 3936-3938.	7.2	116

#	Article	IF	CITATIONS
163	Extending the Biosynthetic Repertoire in Ribosomal Peptide Assembly. Angewandte Chemie - International Edition, 2008, 47, 9386-9388.	7.2	13
164	Advances in and applications of proteasome inhibitors. Current Opinion in Chemical Biology, 2008, 12, 434-440.	2.8	88
165	Discovery and characterization of a marine bacterial SAM-dependent chlorinase. Nature Chemical Biology, 2008, 4, 69-74.	3.9	206
166	Engineered Biosynthesis of Antiprotealide and Other Unnatural Salinosporamide Proteasome Inhibitors. Journal of the American Chemical Society, 2008, 130, 7822-7823.	6.6	68
167	Biosynthesis and Structures of Cyclomarins and Cyclomarazines, Prenylated Cyclic Peptides of Marine Actinobacterial Origin. Journal of the American Chemical Society, 2008, 130, 4507-4516.	6.6	168
168	Genome sequencing reveals complex secondary metabolome in the marine actinomycete Salinispora tropica. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 10376-10381.	3.3	502
169	Molecular Basis for Chloronium-mediated Meroterpene Cyclization. Journal of Biological Chemistry, 2007, 282, 16362-16368.	1.6	157
170	Biosynthetic Convergence of Salinosporamides A and B in the Marine ActinomyceteSalinisporatropica. Organic Letters, 2007, 9, 845-848.	2.4	75
171	Enzymatic total synthesis of enterocin polyketides. Nature Chemical Biology, 2007, 3, 557-558.	3.9	127
172	Biosynthesis of marine natural products: macroorganisms (Part B). Natural Product Reports, 2006, 23, 615.	5.2	66
173	Biosynthesis of Dictyostelium discoideum differentiation-inducing factor by a hybrid type I fatty acid–type III polyketide synthase. Nature Chemical Biology, 2006, 2, 494-502.	3.9	110
174	Binding of Two Flaviolin Substrate Molecules, Oxidative Coupling, and Crystal Structure of Streptomyces coelicolor A3(2) Cytochrome P450 158A2. Journal of Biological Chemistry, 2005, 280, 11599-11607.	1.6	142
175	EncM, a versatile enterocin biosynthetic enzyme involved in Favorskii oxidative rearrangement, aldol condensation, and heterocycle-forming reactions. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 15609-15614.	3.3	99
176	Crystal Structure of a Bacterial Type III Polyketide Synthase and Enzymatic Control of Reactive Polyketide Intermediates. Journal of Biological Chemistry, 2004, 279, 45162-45174.	1.6	149
177	Biosynthesis and Structural Revision of Neomarinone. Organic Letters, 2003, 5, 4449-4452.	2.4	61
178	Molecular Evidence for a Uniform Microbial Community in Sponges from Different Oceans. Applied and Environmental Microbiology, 2002, 68, 4431-4440.	1.4	621
179	Cloning, sequencing and analysis of the enterocin biosynthesis gene cluster from the marine isolate â€~Streptomyces maritimus': evidence for the derailment of an aromatic polyketide synthase. Chemistry and Biology, 2000, 7, 943-955.	6.2	153
180	Structures of cylindrocyphanes a-f. Tetrahedron, 1992, 48, 3001-3006.	1.0	59

#	Article	lF	CITATIONS
181	Biosynthesis of anatoxin-a(s). Origin of the carbons. Tetrahedron Letters, 1992, 33, 6595-6598.	0.7	33
182	[7.7]Paracyclophanes from blue-green algae. Journal of the American Chemical Society, 1990, 112, 4061-4063.	6.6	83