
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4622638/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synergistic enhancement of thermal conductivity by addition of graphene nanoplatelets to threeâ€dimensional boron nitride scaffolds for polyamide 6 composites. Polymer Engineering and Science, 2021, 61, 1415-1426.	3.1	11
2	Hybrid electrical and optical neural interfaces. Journal of Micromechanics and Microengineering, 2021, 31, 044002.	2.6	9
3	Crosstalk in polymer microelectrode arrays. Nano Research, 2021, 14, 3240-3247.	10.4	9
4	Nomogram predicting survival as a selection criterion for postmastectomy radiotherapy in patients with T1 to T2 breast cancer with 1 to 3 positive lymph nodes. Cancer, 2020, 126, 3857-3866.	4.1	10
5	Preface to the Special Issue on Flexible Materials and Structures for Bioengineering, Sensing, and Energy Applications. Journal of Semiconductors, 2020, 41, 040101.	3.7	2
6	Radiation-Induced Lymphopenia Predicts Poorer Prognosis in Patients With Breast Cancer: A Post Hoc Analysis of a Randomized Controlled Trial of Postmastectomy Hypofractionated Radiation Therapy. International Journal of Radiation Oncology Biology Physics, 2020, 108, 277-285.	0.8	33
7	Development of a neural interface for high-definition, long-term recording in rodents and nonhuman primates. Science Translational Medicine, 2020, 12, .	12.4	145
8	Mechanics of Regular-Shape Nanomeshes for Transparent and Stretchable Devices. Journal of Applied Mechanics, Transactions ASME, 2020, 87, .	2.2	4
9	Design of atomically-thin-body field-effect sensors and pattern recognition neural networks for ultra-sensitive and intelligent trace explosive detection. 2D Materials, 2019, 6, 044002.	4.4	1
10	Flexible electronic/optoelectronic microsystems with scalable designs for chronic biointegration. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 15398-15406.	7.1	66
11	Microelectrode Arrays: Transparent, Flexible, Penetrating Microelectrode Arrays with Capabilities of Singleâ€Unit Electrophysiology (Adv. Biosys. 3/2019). Advanced Biology, 2019, 3, 1970033.	3.0	0
12	Nanomeshed Si nanomembranes. Npj Flexible Electronics, 2019, 3, .	10.7	12
13	Transparent, Flexible, Penetrating Microelectrode Arrays with Capabilities of Singleâ€Unit Electrophysiology. Advanced Biology, 2019, 3, e1800276.	3.0	30
14	Transferred, Ultrathin Oxide Bilayers as Biofluid Barriers for Flexible Electronic Implants. Advanced Functional Materials, 2018, 28, 1702284.	14.9	49
15	Ultrathin Trilayer Assemblies as Long-Lived Barriers against Water and Ion Penetration in Flexible Bioelectronic Systems. ACS Nano, 2018, 12, 10317-10326.	14.6	57
16	Imaging Sodium Flux during Action Potentials in Neurons with Fluorescent Nanosensors and Transparent Microelectrodes. ACS Sensors, 2018, 3, 2499-2505.	7.8	16
17	Transparent arrays of bilayer-nanomesh microelectrodes for simultaneous electrophysiology and two-photon imaging in the brain. Science Advances, 2018, 4, eaat0626.	10.3	114
18	Wafer-scale, stretchable nanomeshes from an ultrathin-support-layer assisted transfer. Applied Physics Letters, 2018, 112, .	3.3	8

#	Article	IF	CITATIONS
19	Capacitively coupled arrays of multiplexed flexible silicon transistors for long-term cardiac electrophysiology. Nature Biomedical Engineering, 2017, 1, .	22.5	210
20	Graphene and related two-dimensional materials: Structure-property relationships for electronics and optoelectronics. Applied Physics Reviews, 2017, 4, .	11.3	476
21	Transparent Electrophysiology Microelectrodes and Interconnects from Metal Nanomesh. ACS Nano, 2017, 11, 4365-4372.	14.6	58
22	Bilayer Nanomesh Structures for Transparent Recording and Stimulating Microelectrodes. Advanced Functional Materials, 2017, 27, 1704117.	14.9	47
23	Thin, Transferred Layers of Silicon Dioxide and Silicon Nitride as Water and Ion Barriers for Implantable Flexible Electronic Systems. Advanced Electronic Materials, 2017, 3, 1700077.	5.1	61
24	Stability of MOSFET-Based Electronic Components in Wearable and Implantable Systems. IEEE Transactions on Electron Devices, 2017, 64, 3443-3451.	3.0	16
25	Materials and processing approaches for foundry-compatible transient electronics. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E5522-E5529.	7.1	93
26	2-D InAs XOI FETs. , 2017, , 185-195.		0
27	Bioresorbable silicon electronics for transient spatiotemporal mapping of electrical activity fromÂthe cerebral cortex. Nature Materials, 2016, 15, 782-791.	27.5	400
28	Ultrathin, transferred layers of thermally grown silicon dioxide as biofluid barriers for biointegrated flexible electronic systems. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11682-11687.	7.1	175
29	Possible contribution of IMRT in postoperative radiochemotherapy for rectal cancer: analysis on 1798 patients by prediction model. Oncotarget, 2016, 7, 46536-46544.	1.8	1
30	2D layered materials: From materials properties to device applications. , 2015, , .		9
31	Dual-Gated MoS ₂ /WSe ₂ van der Waals Tunnel Diodes and Transistors. ACS Nano, 2015, 9, 2071-2079.	14.6	560
32	Optics and Nonlinear Buckling Mechanics in Large-Area, Highly Stretchable Arrays of Plasmonic Nanostructures. ACS Nano, 2015, 9, 5968-5975.	14.6	87
33	Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6198-6202.	7.1	970
34	MoS ₂ P-type Transistors and Diodes Enabled by High Work Function MoO _{<i>x</i>} Contacts. Nano Letters, 2014, 14, 1337-1342.	9.1	487
35	Series resistance and mobility in mechanically-exfoliated layered transition metal dichalcogenide MOSFETs. , 2014, , .		2
36	High-Gain Inverters Based on WSe ₂ Complementary Field-Effect Transistors. ACS Nano, 2014, 8, 4948-4953.	14.6	284

#	Article	lF	CITATIONS
37	Strain-Induced Indirect to Direct Bandgap Transition in Multilayer WSe ₂ . Nano Letters, 2014, 14, 4592-4597.	9.1	572
38	High quality interfaces of InAs-on-insulator field-effect transistors with ZrO2 gate dielectrics. Applied Physics Letters, 2013, 102, .	3.3	33
39	Degenerate n-Doping of Few-Layer Transition Metal Dichalcogenides by Potassium. Nano Letters, 2013, 13, 1991-1995.	9.1	651
40	Near-ideal electrical properties of InAs/WSe2 van der Waals heterojunction diodes. Applied Physics Letters, 2013, 102, .	3.3	71
41	Quantum of optical absorption in two-dimensional semiconductors. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 11688-11691.	7.1	75
42	Nanoscale InGaSb Heterostructure Membranes on Si Substrates for High Hole Mobility Transistors. Nano Letters, 2012, 12, 2060-2066.	9.1	85
43	Self-Aligned, Extremely High Frequency Ill–V Metal-Oxide-Semiconductor Field-Effect Transistors on Rigid and Flexible Substrates. Nano Letters, 2012, 12, 4140-4145.	9.1	73
44	III–V Complementary Metal–Oxide–Semiconductor Electronics on Silicon Substrates. Nano Letters, 2012, 12, 3592-3595.	9.1	80
45	Quantum Size Effects on the Chemical Sensing Performance of Two-Dimensional Semiconductors. Journal of Physical Chemistry C, 2012, 116, 9750-9754.	3.1	41
46	High-Performance Single Layered WSe ₂ p-FETs with Chemically Doped Contacts. Nano Letters, 2012, 12, 3788-3792.	9.1	1,547
47	Ultrathin-Body High-Mobility InAsSb-on-Insulator Field-Effect Transistors. IEEE Electron Device Letters, 2012, 33, 504-506.	3.9	28
48	Quantum Confinement Effects in Nanoscale-Thickness InAs Membranes. Nano Letters, 2011, 11, 5008-5012.	9.1	97
49	Thermoelectric Performance of Zn and GeCo-Doped In2O3 Fine-Grained Ceramics by the Spark Plasma Sintering. Journal of the American Ceramic Society, 2011, 94, 2279-2281.	3.8	16
50	Nanoscale Semiconductor "X―on Substrate "Y―– Processes, Devices, and Applications. Advanced Materials, 2011, 23, 3115-3127.	21.0	42
51	Benchmarking the performance of ultrathin body InAs-on-insulator transistors as a function of body thickness. Applied Physics Letters, 2011, 99, .	3.3	40
52	Strain engineering of epitaxially transferred, ultrathin layers of III-V semiconductor on insulator. Applied Physics Letters, 2011, 98, 012111.	3.3	23
53	Influence of <i>in situ</i> compatibilization on <i>in situ</i> formation of lowâ€density polyethylene/polyamide 6 blends by reactive extrusion. Journal of Applied Polymer Science, 2010, 116, 3027-3034.	2.6	6
54	Highâ€Temperature Thermoelectric Behaviors of Fineâ€Grained Gdâ€Doped CaMnO ₃ Ceramics. Journal of the American Ceramic Society, 2010, 93, 2121-2124.	3.8	67

#	Article	IF	CITATIONS
55	Ultrathin compound semiconductor on insulator layers for high-performance nanoscale transistors. Nature, 2010, 468, 286-289.	27.8	373
56	Shape-Controlled Synthesis of Single-Crystalline Nanopillar Arrays by Template-Assisted Vaporâ^'Liquidâ^'Solid Process. Journal of the American Chemical Society, 2010, 132, 13972-13974.	13.7	29
57	Metal-catalyzed crystallization of amorphous carbon to graphene. Applied Physics Letters, 2010, 96, .	3.3	234
58	Fabrication of slantingly-aligned silicon nanowire arrays for solar cell applications. Nanotechnology, 2008, 19, 255703.	2.6	214
59	Topochemical Synthesis of a High-Aspect-Ratio Platelet NaNbO3Template. Journal of the American Ceramic Society, 2007, 90, 2399-2403.	3.8	37