Filippo Acconcia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4622289/publications.pdf

Version: 2024-02-01

69 papers 4,162 citations

34 h-index 63 g-index

72 all docs 72 docs citations

times ranked

72

4744 citing authors

#	Article	IF	CITATIONS
1	Palmitoylation-dependent Estrogen Receptor \hat{l}_{\pm} Membrane Localization: Regulation by $17\hat{l}^2$ -Estradiol. Molecular Biology of the Cell, 2005, 16, 231-237.	2.1	406
2	Molecular Mechanisms of Action of BPA. Dose-Response, 2015, 13, 155932581561058.	1.6	263
3	Signaling regulation of genomic and nongenomic functions of estrogen receptors. Cancer Letters, 2006, 238, 1-14.	7.2	209
4	AtCYS1, a cystatin from Arabidopsis thaliana, suppresses hypersensitive cell death. FEBS Journal, 2003, 270, 2593-2604.	0.2	181
5	Survival versus apoptotic 17?-estradiol effect: Role of ER? and ER? activated non-genomic signaling. Journal of Cellular Physiology, 2005, 203, 193-201.	4.1	180
6	Ubiquitin in trafficking: The network at work. Experimental Cell Research, 2009, 315, 1610-1618.	2.6	176
7	S-palmitoylation modulates human estrogen receptor-α functions. Biochemical and Biophysical Research Communications, 2004, 316, 878-883.	2.1	158
8	Distinct Nongenomic Signal Transduction Pathways Controlled by 17β-Estradiol Regulate DNA Synthesis and Cyclin D1Gene Transcription in HepG2 Cells. Molecular Biology of the Cell, 2002, 13, 3720-3729.	2.1	131
9	Rapid Nongenomic Effects of 3,5,3′-Triiodo-l-Thyronine on the Intracellular pH of L-6 Myoblasts Are Mediated by Intracellular Calcium Mobilization and Kinase Pathways. Endocrinology, 2004, 145, 5694-5703.	2.8	122
10	Mechanisms of Naringenin-induced Apoptotic Cascade in Cancer Cells: Involvement of Estrogen Receptor \hat{l}_{\pm} and \hat{l}^{2} Signalling. IUBMB Life, 2004, 56, 491-499.	3.4	113
11	Biphasic Estradiol-induced AKT Phosphorylation Is Modulated by PTEN via MAP Kinase in HepG2 Cells. Molecular Biology of the Cell, 2003, 14, 2583-2591.	2.1	111
12	Palmitoylation Regulates 17β-Estradiol-Induced Estrogen Receptor-α Degradation and Transcriptional Activity. Molecular Endocrinology, 2012, 26, 762-774.	3.7	105
13	Cortactin Promotes Migration and Platelet-derived Growth Factor-induced Actin Reorganization by Signaling to Rho-GTPases. Molecular Biology of the Cell, 2009, 20, 3209-3223.	2.1	102
14	Estrogen and Tamoxifen Induce Cytoskeletal Remodeling and Migration in Endometrial Cancer Cells. Endocrinology, 2006, 147, 1203-1212.	2.8	90
15	S-palmitoylation modulates estrogen receptor α localization and functions. Steroids, 2006, 71, 298-303.	1.8	84
16	An inherent role of microtubule network in the action of nuclear receptor. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 15981-15986.	7.1	84
17	The Effects of $17\hat{l}^2$ -estradiol in Cancer are Mediated by Estrogen Receptor Signaling at the Plasma Membrane. Frontiers in Physiology, 2011, 2, 30.	2.8	83
18	Neuroglobin upregulation induced by $17\hat{l}^2$ -estradiol sequesters cytocrome c in the mitochondria preventing H2O2-induced apoptosis of neuroblastoma cells. Cell Death and Disease, 2013, 4, e508-e508.	6.3	75

#	Article	IF	CITATIONS
19	Phosphorylation-dependent regulation of nuclear localization and functions of integrin-linked kinase. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 6782-6787.	7.1	74
20	Susceptibility of estrogen receptor rapid responses to xenoestrogens: Physiological outcomes. Steroids, 2012, 77, 910-917.	1.8	73
21	The proâ€apoptotic effect of quercetin in cancer cell lines requires ERβâ€dependent signals. Journal of Cellular Physiology, 2012, 227, 1891-1898.	4.1	68
22	17β-Estradiol regulates the first steps of skeletal muscle cell differentiation via ER-α-mediated signals. American Journal of Physiology - Cell Physiology, 2009, 297, C1249-C1262.	4.6	66
23	Bisphenol A impairs estradiolâ€induced protective effects against DLDâ€1 colon cancer cell growth. IUBMB Life, 2010, 62, 684-687.	3.4	63
24	Daidzein-Sulfate Metabolites Affect Transcriptional and Antiproliferative Activities of Estrogen Receptor-Î ² in Cultured Human Cancer Cells. Journal of Nutrition, 2005, 135, 2687-2693.	2.9	61
25	Nutritional Flavonoids Modulate Estrogen Receptor α Signaling. IUBMB Life, 2004, 56, 145-151.	3.4	58
26	The naringeninâ€induced proapoptotic effect in breast cancer cell lines holds out against a high bisphenol a background. IUBMB Life, 2012, 64, 690-696.	3.4	51
27	Myosin VI Contains a Compact Structural Motif that Binds to Ubiquitin Chains. Cell Reports, 2016, 14, 2683-2694.	6.4	49
28	Does Palmitoylation Target Estrogen Receptors to Plasma Membrane Caveolae?. IUBMB Life, 2003, 55, 33-35.	3.4	45
29	Neuroglobin, a pro-survival player in estrogen receptor $\hat{l}\pm$ -positive cancer cells. Cell Death and Disease, 2014, 5, e1449-e1449.	6.3	45
30	An Inherent Role of Integrin-Linked Kinase-Estrogen Receptor \hat{l}_{\pm} Interaction in Cell Migration. Cancer Research, 2006, 66, 11030-11038.	0.9	41
31	Functional polymeric nanoparticles for dexamethasone loading and release. Colloids and Surfaces B: Biointerfaces, 2012, 93, 59-66.	5.0	41
32	Lysosomal Function Is Involved in $17\hat{l}^2$ -Estradiol-Induced Estrogen Receptor \hat{l}^\pm Degradation and Cell Proliferation. PLoS ONE, 2014, 9, e94880.	2.5	41
33	Xenoestrogen regulation of $\mathrm{ERl}^\pm/\mathrm{ERl}^2$ balance in hormone-associated cancers. Molecular and Cellular Endocrinology, 2017, 457, 3-12.	3.2	39
34	Xenoestrogens Alter Estrogen Receptor (ER) α Intracellular Levels. PLoS ONE, 2014, 9, e88961.	2.5	38
35	HIV-1 Nef Induces Proinflammatory State in Macrophages through Its Acidic Cluster Domain: Involvement of TNF Alpha Receptor Associated Factor 2. PLoS ONE, 2011, 6, e22982.	2.5	36
36	Dynamin II is required for $17\hat{l}^2$ -estradiol signaling and autophagy-based ERÎ \pm degradation. Scientific Reports, 2016, 6, 23727.	3.3	35

#	Article	IF	CITATIONS
37	$17\hat{l}^2$ -Estradiol-induced cell proliferation requires estrogen receptor (ER) \hat{l}^\pm monoubiquitination. Cellular Signalling, 2011, 23, 1128-1135.	3 . 6	31
38	Nitric oxide impairs the $17\hat{l}^2$ -estradiol-induced apoptosis in human colon adenocarcinoma cells. Endocrine-Related Cancer, 2006, 13, 559-569.	3.1	30
39	Strategies to degrade estrogen receptor \hat{l}_{\pm} in primary and ESR1 mutant-expressing metastatic breast cancer. Molecular and Cellular Endocrinology, 2019, 480, 107-121.	3.2	30
40	Synergism between Genomic and Non Genomic Estrogen Action Mechanisms. IUBMB Life, 2003, 55, 145-150.	3.4	29
41	Naringenin and 17βâ€estradiol coadministration prevents hormoneâ€induced human cancer cell growth. IUBMB Life, 2010, 62, 51-60.	3.4	25
42	ERÎ 2 -dependent neuroglobin up-regulation impairs 17 Î 2 -estradiol-induced apoptosis in DLD-1 colon cancer cells upon oxidative stress injury. Journal of Steroid Biochemistry and Molecular Biology, 2015, 149, 128-137.	2.5	25
43	Clathrin Heavy Chain Interacts With Estrogen Receptor α and Modulates 17β-Estradiol Signaling. Molecular Endocrinology, 2015, 29, 739-755.	3.7	25
44	Emetine induces estrogen receptor alpha degradation and prevents 17β-estradiol-induced breast cancer cell proliferation. Cellular Oncology (Dordrecht), 2017, 40, 299-301.	4.4	25
45	Estrogen Receptor Signalling: Bases for Drug Actions. Current Drug Targets Immune, Endocrine and Metabolic Disorders, 2005, 5, 305-314.	1.8	22
46	Modulation of 17βâ€Estradiol Signaling on Cellular Proliferation by Caveolinâ€2. Journal of Cellular Physiology, 2016, 231, 1219-1225.	4.1	22
47	Signaling functions of ubiquitin in the $17\hat{l}^2$ -estradiol (E2):estrogen receptor (ER) \hat{l}^{\pm} network. Journal of Steroid Biochemistry and Molecular Biology, 2011, 127, 223-230.	2.5	21
48	17βâ€estradiol regulates estrogen receptor α monoubiquitination. IUBMB Life, 2011, 63, 49-53.	3.4	19
49	A functional drug re-purposing screening identifies carfilzomib as a drug preventing 17β-estradiol: ERα signaling and cell proliferation in breast cancer cells. Molecular and Cellular Endocrinology, 2018, 460, 229-237.	3.2	19
50	A Tale of Ice and Fire: The Dual Role for $17\hat{l}^2$ -Estradiol in Balancing DNA Damage and Genome Integrity. Cancers, 2021, 13, 1583.	3.7	19
51	The extra-nuclear interactome of the estrogen receptors: implications for physiological functions. Molecular and Cellular Endocrinology, 2021, 538, 111452.	3.2	19
52	Estrogen receptor $\hat{l}\pm L429$ and A430 regulate $17\hat{l}^2$ -estradiol-induced cell proliferation via CREB1. Cellular Signalling, 2015, 27, 2380-2388.	3.6	18
53	A high throughput method to study the physiology of E2:ERα signaling in breast cancer cells. Journal of Cellular Physiology, 2018, 233, 3713-3722.	4.1	18
54	The Network of Angiotensin Receptors in Breast Cancer. Cells, 2020, 9, 1336.	4.1	17

#	Article	IF	Citations
55	Nanostructured functional co-polymers bioconjugate integrin inhibitors. Journal of Colloid and Interface Science, 2011, 361, 465-471.	9.4	16
56	In silico screening for ERα down modulators identifies thioridazine as an anti-proliferative agent in primary, 40H-tamoxifen-resistant and Y537S ERα-expressing breast cancer cells. Cellular Oncology (Dordrecht), 2018, 41, 677-686.	4.4	16
57	Identification of an estrogen receptor alpha non-covalent ubiquitin binding surface: role in 17beta-estradiol-induced transcriptional activity. Journal of Cell Science, 2013, 126, 2577-82.	2.0	15
58	Ouabain and Digoxin Activate the Proteasome and the Degradation of the ERα in Cells Modeling Primary and Metastatic Breast Cancer. Cancers, 2020, 12, 3840.	3.7	14
59	Realâ€time measurement of E2: ERα transcriptional activity in living cells. Journal of Cellular Physiology, 2020, 235, 6697-6710.	4.1	14
60	The Peculiar Estrogenicity of Diethyl Phthalate: Modulation of Estrogen Receptor \hat{l}_{\pm} Activities in the Proliferation of Breast Cancer Cells. Toxics, 2021, 9, 237.	3.7	14
61	Ubiquitinâ€activating enzyme is necessary for 17βâ€estradiolâ€induced breast cancer cell proliferation and migration. IUBMB Life, 2014, 66, 578-585.	3.4	13
62	Unexpected Impact of a Hepatitis C Virus Inhibitor on $17\hat{l}^2$ -Estradiol Signaling in Breast Cancer. International Journal of Molecular Sciences, 2020, 21, 3418.	4.1	12
63	Selective binding of estrogen receptor α to ubiquitin chains. IUBMB Life, 2016, 68, 569-577.	3.4	10
64	A New Anti-Estrogen Discovery Platform Identifies FDA-Approved Imidazole Anti-Fungal Drugs as Bioactive Compounds against ERα Expressing Breast Cancer Cells. International Journal of Molecular Sciences, 2021, 22, 2915.	4.1	10
65	Clinically relevant CHK1 inhibitors abrogate wild-type and Y537S mutant ERα expression and proliferation in luminal primary and metastatic breast cancer cells. Journal of Experimental and Clinical Cancer Research, 2022, 41, 141.	8.6	8
66	Real-Time Challenging of ERα Y537S Mutant Transcriptional Activity in Living Cells. Endocrines, 2021, 2, 54-64.	1.0	6
67	The Role of Endocytic Pathways on Estrogen Receptor α Intracellular Trafficking and 17β-estradiol Signaling. Immunology, Endocrine and Metabolic Agents in Medicinal Chemistry, 2015, 14, 75-90.	0.5	2
68	Modulation of estrogen receptor \hat{l}_\pm levels by endogenous and exogenous ligands. Journal of Biological Research (Italy), 2011, 84, .	0.1	0
69	Estrogen Receptor Signaling: Impact on Cell Functions. Current Signal Transduction Therapy, 2009, 4, 111-121.	0.5	0