Neha Arora

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4622218/publications.pdf Version: 2024-02-01

Νέην Δρώρν

#	Article	IF	CITATIONS
1	Sustainable biodiesel production from oleaginous yeasts utilizing hydrolysates of various non-edible lignocellulosic biomasses. Renewable and Sustainable Energy Reviews, 2016, 62, 836-855.	16.4	180
2	Assessment of fuel properties on the basis of fatty acid profiles of oleaginous yeast for potential biodiesel production. Renewable and Sustainable Energy Reviews, 2017, 77, 604-616.	16.4	164
3	Biodiesel production from non-edible lignocellulosic biomass of Cassia fistula L. fruit pulp using oleaginous yeast Rhodosporidium kratochvilovae HIMPA1. Bioresource Technology, 2015, 197, 91-98.	9.6	107
4	Synergistic dynamics of nitrogen and phosphorous influences lipid productivity in Chlorella minutissima for biodiesel production. Bioresource Technology, 2016, 213, 79-87.	9.6	102
5	Biological treatment of pulp and paper industry effluent by oleaginous yeast integrated with production of biodiesel as sustainable transportation fuel. Journal of Cleaner Production, 2017, 142, 2858-2864.	9.3	79
6	Acoustic cavitation induced synthesis of zirconium impregnated activated carbon for effective fluoride scavenging from water by adsorption. Ultrasonics Sonochemistry, 2018, 45, 65-77.	8.2	70
7	A hybrid approach integrating arsenic detoxification with biodiesel production using oleaginous microalgae. Algal Research, 2017, 24, 29-39.	4.6	69
8	Leveraging algal omics to reveal potential targets for augmenting TAG accumulation. Biotechnology Advances, 2018, 36, 1274-1292.	11.7	65
9	Bioremediation of domestic and industrial wastewaters integrated with enhanced biodiesel production using novel oleaginous microalgae. Environmental Science and Pollution Research, 2016, 23, 20997-21007.	5.3	57
10	Antifungal and Anti-Biofilm Activity of Essential Oil Active Components against Cryptococcus neoformans and Cryptococcus laurentii. Frontiers in Microbiology, 2017, 8, 2161.	3.5	57
11	Co-culturing of oleaginous microalgae and yeast: paradigm shift towards enhanced lipid productivity. Environmental Science and Pollution Research, 2019, 26, 16952-16973.	5.3	57
12	Biodegradation of phenol via meta cleavage pathway triggers de novo TAG biosynthesis pathway in oleaginous yeast. Journal of Hazardous Materials, 2017, 340, 47-56.	12.4	56
13	Small-scale phyco-mitigation of raw urban wastewater integrated with biodiesel production and its utilization for aquaculture. Bioresource Technology, 2020, 297, 122489.	9.6	51
14	NMR-Based Metabolomic Approach To Elucidate the Differential Cellular Responses during Mitigation of Arsenic(III, V) in a Green Microalga. ACS Omega, 2018, 3, 11847-11856.	3.5	50
15	Harnessing the Power of Mutagenesis and Adaptive Laboratory Evolution for High Lipid Production by Oleaginous Microalgae and Yeasts. Sustainability, 2020, 12, 5125.	3.2	50
16	Boosting TAG Accumulation with Improved Biodiesel Production from Novel Oleaginous Microalgae Scenedesmus sp. IITRIND2 Utilizing Waste Sugarcane Bagasse Aqueous Extract (SBAE). Applied Biochemistry and Biotechnology, 2016, 180, 109-121.	2.9	47
17	A novel rapid ultrasonication-microwave treatment for total lipid extraction from wet oleaginous yeast biomass for sustainable biodiesel production. Ultrasonics Sonochemistry, 2019, 51, 504-516.	8.2	47
18	Insights into the Enhanced Lipid Production Characteristics of a Fresh Water Microalga under High Salinity Conditions. Industrial & Engineering Chemistry Research, 2017, 56, 7413-7421.	3.7	43

Neha Arora

#	Article	IF	CITATIONS
19	Microalgae fuel cell for wastewater treatment: Recent advances and challenges. Journal of Water Process Engineering, 2020, 38, 101549.	5.6	43
20	Delineating the molecular responses of a halotolerant microalga using integrated omics approach to identify genetic engineering targets for enhanced TAG production. Biotechnology for Biofuels, 2019, 12, 2.	6.2	42
21	Novel bio-based solid acid catalyst derived from waste yeast residue for biodiesel production. Renewable Energy, 2020, 159, 127-139.	8.9	38
22	Augmented lipid accumulation in ethyl methyl sulphonate mutants of oleaginous microalga for biodiesel production. Bioresource Technology, 2017, 242, 121-127.	9.6	34
23	Elucidating the unique physiological responses of halotolerant Scenedesmus sp. cultivated in sea water for biofuel production. Algal Research, 2019, 37, 260-268.	4.6	34
24	Insights into the physiology of Chlorella vulgaris cultivated in sweet sorghum bagasse hydrolysate for sustainable algal biomass and lipid production. Scientific Reports, 2021, 11, 6779.	3.3	34
25	Delineating the Biofilm Inhibition Mechanisms of Phenolic and Aldehydic Terpenes against <i>Cryptococcus neoformans</i> . ACS Omega, 2019, 4, 17634-17648.	3.5	33
26	Chemistry and Biology of Farnesol and its Derivatives: Quorum Sensing Molecules with Immense Therapeutic Potential. Current Topics in Medicinal Chemistry, 2019, 18, 1937-1954.	2.1	27
27	Microalgae strain improvement strategies: random mutagenesis and adaptive laboratory evolution. Trends in Plant Science, 2021, 26, 1199-1200.	8.8	24
28	Pretreated algal bloom as a substantial nutrient source for microalgae cultivation for biodiesel production. Bioresource Technology, 2017, 242, 152-160.	9.6	21
29	Beneficial use of the aqueous phase generated during hydrothermal carbonization of algae as nutrient source for algae cultivation. Algal Research, 2021, 60, 102485.	4.6	19
30	Lipid-extracted algae as a source of biomaterials for algae biorefineries. Algal Research, 2021, 57, 102354.	4.6	18
31	Utilization of stagnant non-potable pond water for cultivating oleaginous microalga Chlorella minutissima for biodiesel production. Renewable Energy, 2018, 126, 30-37.	8.9	17
32	Elucidating the bioremediation mechanism of Scenedesmus sp. IITRIND2 under cadmium stress. Chemosphere, 2021, 283, 131196.	8.2	17
33	Different Cell Disruption and Lipid Extraction Methods from Microalgae for Biodiesel Production. , 2019, , 265-292.		16
34	Amaranth seeds (Amaranthus palmeri L.) as novel feedstock for biodiesel production by oleaginous yeast. Environmental Science and Pollution Research, 2018, 25, 353-362.	5.3	14
35	Assessing the robust growth and lipid-accumulating characteristics of Scenedesmus sp. for biodiesel production. Environmental Science and Pollution Research, 2020, 27, 27449-27456.	5.3	14
36	Deciphering metabolic alterations in algae cultivated in spent media as means for enhancing algal biorefinery sustainability. Bioresource Technology, 2021, 342, 125890.	9.6	14

Neha Arora

#	Article	IF	CITATIONS
37	Microalgae. , 2019, , 97-128.		13
38	Recycled de-Oiled Algal Biomass Extract as a Feedstock for Boosting Biodiesel Production from Chlorella minutissima. Applied Biochemistry and Biotechnology, 2016, 180, 1534-1541.	2.9	11
39	Microwave-assisted pretreatment of harmful algal blooms for microbial oil-centered biorefinery approach. Biomass Conversion and Biorefinery, 2022, 12, 3097-3105.	4.6	11
40	The Prospects of Agricultural and Food Residue Hydrolysates for Sustainable Production of Algal Products. Energies, 2020, 13, 6427.	3.1	11
41	Unraveling metabolic alterations in Chlorella vulgaris cultivated on renewable sugars using time resolved multi-omics. Science of the Total Environment, 2021, 800, 149504.	8.0	9
42	Physiological insights into enhanced lipid accumulation and temperature tolerance by Tetraselmis suecica ultraviolet mutants. Science of the Total Environment, 2022, 839, 156361.	8.0	7
43	Dissecting Enhanced Carbohydrate and Pigment Productivity in Mutants of <i>Nannochloropsis oculata</i> Using Metabolomics and Lipidomics. Journal of Agricultural and Food Chemistry, 2022, 70, 8338-8350.	5.2	7
44	Synthesis and characterization of polyether urethane coatings for preventing implant infection. Composite Interfaces, 2014, 21, 51-58.	2.3	4
45	Algae as a Budding Tool for Mitigation of Arsenic from Aquatic Systems. , 2018, , 269-297.		4
46	Antineoplastic and antioxidant potential of phycofabricated silver nanoparticles using microalgae <i>Chlorella minutissima</i> . IET Nanobiotechnology, 2017, 11, 827-834.	3.8	3
47	1H NMR-based metabolomics and lipidomics of microalgae. Trends in Plant Science, 2021, 26, 984-985.	8.8	3
48	An Integrated Approach of Wastewater Mitigation and Biomass Production for Biodiesel Using Scenedesmus sp , 2019, , 467-494.		2
49	Advanced Gene Technology and Synthetic Biology Approaches to Custom Design Microalgae for Biodiesel Production. , 2019, , 147-175.		2
50	Antineoplastic and Antimicrobial Potential of Novel Phytofabricated Silver Nanoparticles from Pterospermum acerifolium Leaf Extract. Nanoscience and Nanotechnology - Asia, 2018, 8, 297-308.	0.7	1
51	Life cycle assessment of photosynthetic microalgae for sustainable biodiesel production. , 2021, , 369-387.		0