J P Krasting

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4622160/publications.pdf Version: 2024-02-01

I D KDASTINC

#	Article	IF	CITATIONS
1	GFDL's ESM2 Global Coupled Climate–Carbon Earth System Models. Part I: Physical Formulation and Baseline Simulation Characteristics. Journal of Climate, 2012, 25, 6646-6665.	3.2	972
2	GFDL's ESM2 Global Coupled Climate–Carbon Earth System Models. Part II: Carbon System Formulation and Baseline Simulation Characteristics*. Journal of Climate, 2013, 26, 2247-2267.	3.2	540
3	Dominance of the Southern Ocean in Anthropogenic Carbon and Heat Uptake in CMIP5 Models. Journal of Climate, 2015, 28, 862-886.	3.2	432
4	Taking climate model evaluation to the next level. Nature Climate Change, 2019, 9, 102-110.	18.8	407
5	The GFDL Earth System Model Version 4.1 (GFDLâ€ESM 4.1): Overall Coupled Model Description and Simulation Characteristics. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS002015.	3.8	277
6	Carbon–concentration and carbon–climate feedbacks in CMIP6 models and their comparison to CMIP5 models. Biogeosciences, 2020, 17, 4173-4222.	3.3	255
7	Structure and Performance of GFDL's CM4.0 Climate Model. Journal of Advances in Modeling Earth Systems, 2019, 11, 3691-3727.	3.8	242
8	OMIP contribution to CMIP6: experimental and diagnostic protocol for the physical component of the Ocean Model Intercomparison Project. Geoscientific Model Development, 2016, 9, 3231-3296.	3.6	223
9	The impact of anthropogenic land use and land cover change on regional climate extremes. Nature Communications, 2017, 8, 989.	12.8	207
10	The GFDL Global Ocean and Sea Ice Model OM4.0: Model Description and Simulation Features. Journal of Advances in Modeling Earth Systems, 2019, 11, 3167-3211.	3.8	195
11	The GFDL Global Atmosphere and Land Model AM4.0/LM4.0: 2. Model Description, Sensitivity Studies, and Tuning Strategies. Journal of Advances in Modeling Earth Systems, 2018, 10, 735-769.	3.8	185
12	Future Changes in Northern Hemisphere Snowfall. Journal of Climate, 2013, 26, 7813-7828.	3.2	173
13	The GFDL Global Atmosphere and Land Model AM4.0/LM4.0: 1. Simulation Characteristics With Prescribed SSTs. Journal of Advances in Modeling Earth Systems, 2018, 10, 691-734.	3.8	155
14	ESMValTool (v1.0) – a community diagnostic and performance metrics tool for routine evaluation of Earth system models in CMIP. Geoscientific Model Development, 2016, 9, 1747-1802.	3.6	127
15	Ocean response to volcanic eruptions in <scp>C</scp> oupled <scp>M</scp> odel <scp>I</scp> ntercomparison <scp>P</scp> roject 5 simulations. Journal of Geophysical Research: Oceans, 2014, 119, 5622-5637.	2.6	90
16	Historical warming reduced due to enhanced land carbon uptake. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 16730-16735.	7.1	88
17	Ocean Biogeochemistry in GFDL's Earth System Model 4.1 and Its Response to Increasing Atmospheric CO ₂ . Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS002043.	3.8	70
18	Trajectory sensitivity of the transient climate response to cumulative carbon emissions. Geophysical Research Letters, 2014, 41, 2520-2527.	4.0	41

J P Krasting

#	Article	IF	CITATIONS
19	Rising Temperatures Increase Importance of Oceanic Evaporation as a Source for Continental Precipitation. Journal of Climate, 2019, 32, 7713-7726.	3.2	37
20	Sensitivity of Twenty-First-Century Global-Mean Steric Sea Level Rise to Ocean Model Formulation. Journal of Climate, 2013, 26, 2947-2956.	3.2	25
21	Enhanced Atlantic sea-level rise relative to the Pacific under high carbon emission rates. Nature Geoscience, 2016, 9, 210-214.	12.9	24
22	Simple Global Ocean Biogeochemistry With Light, Iron, Nutrients and Gas Version 2 (BLINGv2): Model Description and Simulation Characteristics in GFDL's CM4.0. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS002008.	3.8	24
23	Climate Sensitivity of GFDL's CM4.0. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS001838.	3.8	17
24	Comparison of Equilibrium Climate Sensitivity Estimates From Slab Ocean, 150â€Year, and Longer Simulations. Geophysical Research Letters, 2020, 47, e2020GL088852.	4.0	16
25	Importance of the Antarctic Slope Current in the Southern Ocean Response to Ice Sheet Melt and Wind Stress Change. Journal of Geophysical Research: Oceans, 2022, 127, .	2.6	14
26	Impact of Mountains on Tropical Circulation in Two Earth System Models. Journal of Climate, 2017, 30, 4149-4163.	3.2	13
27	Role of Ocean Model Formulation in Climate Response Uncertainty. Journal of Climate, 2018, 31, 9313-9333.	3.2	9
28	The Mechanistic Role of the Central American Seaway in a GFDL Earth System Model. Part 1: Impacts on Global Ocean Mean State and Circulation. Paleoceanography and Paleoclimatology, 2018, 33, 840-859.	2.9	7
29	Oceanic and Atmospheric Drivers of Postâ€Elâ€Niño Chlorophyll Rebound in the Equatorial Pacific. Geophysical Research Letters, 2022, 49, .	4.0	5
30	The Role of Continental Topography in the Present-Day Ocean's Mean Climate. Journal of Climate, 2022, 35, 1327-1346.	3.2	2
31	Regional sensitivity patterns of Arctic Ocean acidification revealed with machine learning. Communications Earth & Environment, 2022, 3, .	6.8	2