
A Mark Evans

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4622035/publications.pdf Version: 2024-02-01

A MADE FUANS

#	Article	lF	CITATIONS
1	NAADP mobilizes calcium from acidic organelles through two-pore channels. Nature, 2009, 459, 596-600.	27.8	687
2	Use of Cells Expressing Î ³ Subunit Variants to Identify Diverse Mechanisms of AMPK Activation. Cell Metabolism, 2010, 11, 554-565.	16.2	661
3	Lysosome-Sarcoplasmic Reticulum Junctions. Journal of Biological Chemistry, 2004, 279, 54319-54326.	3.4	179
4	Does AMP-activated Protein Kinase Couple Inhibition of Mitochondrial Oxidative Phosphorylation by Hypoxia to Calcium Signaling in O2-sensing Cells?. Journal of Biological Chemistry, 2005, 280, 41504-41511.	3.4	160
5	Inhibition of sustained hypoxic vasoconstriction by Yâ€27632 in isolated intrapulmonary arteries and perfused lung of the rat. British Journal of Pharmacology, 2000, 131, 5-9.	5.4	142
6	AMP-activated Protein Kinase Mediates Carotid Body Excitation by Hypoxia. Journal of Biological Chemistry, 2007, 282, 8092-8098.	3.4	126
7	Phosphorylation of the voltage-gated potassium channel Kv2.1 by AMP-activated protein kinase regulates membrane excitability. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 18132-18137.	7.1	125
8	Calcium signaling via two-pore channels: local or global, that is the question. American Journal of Physiology - Cell Physiology, 2010, 298, C430-C441.	4.6	117
9	ADP-ribosyl Cyclase and Cyclic ADP-ribose Hydrolase Act as a Redox Sensor. Journal of Biological Chemistry, 2001, 276, 11180-11188.	3.4	116
10	Hypoxic release of calcium from the sarcoplasmic reticulum of pulmonary artery smooth muscle. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2001, 281, L318-L325.	2.9	107
11	Cyclic ADP-Ribose Is the Primary Trigger for Hypoxic Pulmonary Vasoconstriction in the Rat Lung In Situ. Circulation Research, 2001, 89, 77-83.	4.5	107
12	Nicotinic Acid Adenine Dinucleotide Phosphate Mediates Ca2+Signals and Contraction in Arterial Smooth Muscle via a Two-Pool Mechanism. Circulation Research, 2002, 91, 1168-1175.	4.5	106
13	Lysosomes co-localize with ryanodine receptor subtype 3 to form a trigger zone for calcium signalling by NAADP in rat pulmonary arterial smooth muscle. Cell Calcium, 2008, 44, 190-201.	2.4	95
14	Cyclic Adenosine Diphosphate Ribose Activates Ryanodine Receptors, whereas NAADP Activates Two-pore Domain Channels. Journal of Biological Chemistry, 2011, 286, 9136-9140.	3.4	78
15	TPCs: Endolysosomal channels for Ca ²⁺ mobilization from acidic organelles triggered by NAADP. FEBS Letters, 2010, 584, 1966-1974.	2.8	71
16	Lysosomal Two-pore Channel Subtype 2 (TPC2) Regulates Skeletal Muscle Autophagic Signaling. Journal of Biological Chemistry, 2015, 290, 3377-3389.	3.4	69
17	Mechanisms for acute oxygen sensing in the carotid body. Respiratory Physiology and Neurobiology, 2010, 174, 292-298.	1.6	62
18	mTORC1 controls lysosomal Ca ²⁺ release through the two-pore channel TPC2. Science Signaling, 2018, 11, .	3.6	59

A MARK EVANS

#	Article	IF	CITATIONS
19	Hypoxic pulmonary vasoconstriction: mechanisms of oxygen-sensing. Current Opinion in Anaesthesiology, 2011, 24, 13-20.	2.0	55
20	Vasodilation by the Calcium-mobilizing Messenger Cyclic ADP-ribose. Journal of Biological Chemistry, 2003, 278, 9602-9608.	3.4	50
21	Selective Expression in Carotid Body Type I Cells of a Single Splice Variant of the Large Conductance Calcium- and Voltage-activated Potassium Channel Confers Regulation by AMP-activated Protein Kinase. Journal of Biological Chemistry, 2011, 286, 11929-11936.	3.4	48
22	Hypoxic pulmonary vasoconstriction: cyclic adenosine diphosphate-ribose, smooth muscle Ca2+ stores and the endothelium. Respiratory Physiology and Neurobiology, 2002, 132, 3-15.	1.6	46
23	ETA receptors are the primary mediators of myofilament calcium sensitization induced by ET-1 in rat pulmonary artery smooth muscle: a tyrosine kinase independent pathway. British Journal of Pharmacology, 1999, 127, 153-160.	5.4	45
24	Cytoplasmic nanojunctions between lysosomes and sarcoplasmic reticulum are required for specific calcium signaling. F1000Research, 2014, 3, 93.	1.6	44
25	AMP-activated protein kinase and the regulation of Ca2+signalling in O2-sensing cells. Journal of Physiology, 2006, 574, 113-123.	2.9	43
26	Ion Channel Regulation by AMPK. Annals of the New York Academy of Sciences, 2009, 1177, 89-100.	3.8	42
27	Identification of Functionally Segregated Sarcoplasmic Reticulum Calcium Stores in Pulmonary Arterial Smooth Muscle. Journal of Biological Chemistry, 2010, 285, 13542-13549.	3.4	42
28	AMP-activated Protein Kinase Deficiency Blocks the Hypoxic Ventilatory Response and Thus Precipitates Hypoventilation and Apnea. American Journal of Respiratory and Critical Care Medicine, 2016, 193, 1032-1043.	5.6	41
29	Genotoxic Damage Activates the AMPK-α1 Isoform in the Nucleus via Ca2+/CaMKK2 Signaling to Enhance Tumor Cell Survival. Molecular Cancer Research, 2018, 16, 345-357.	3.4	41
30	AMP-activated protein kinase and hypoxic pulmonary vasoconstriction. European Journal of Pharmacology, 2008, 595, 39-43.	3.5	40
31	Panâ€junctional sarcoplasmic reticulum in vascular smooth muscle: nanospace Ca ²⁺ transport for site―and functionâ€specific Ca ²⁺ signalling. Journal of Physiology, 2013, 591, 2043-2054.	2.9	39
32	AMPâ€activated protein kinase inhibits K _v 1.5 channel currents of pulmonary arterial myocytes in response to hypoxia and inhibition of mitochondrial oxidative phosphorylation. Journal of Physiology, 2016, 594, 4901-4915.	2.9	33
33	Pyridine nucleotides and calcium signalling in arterial smooth muscle: From cell physiology to pharmacology. , 2005, 107, 286-313.		32
34	Hypoxic Pulmonary Vasoconstriction $\hat{a} \in$ Invited Article. Advances in Experimental Medicine and Biology, 2009, 648, 351-360.	1.6	28
35	AMP-activated protein kinase underpins hypoxic pulmonary vasoconstriction and carotid body excitation by hypoxia in mammals. Experimental Physiology, 2006, 91, 821-827.	2.0	27
36	The LKB1–AMPK-α1 signaling pathway triggers hypoxic pulmonary vasoconstriction downstream of mitochondria. Science Signaling, 2018, 11, .	3.6	27

A MARK EVANS

#	Article	IF	CITATIONS
37	AMP-activated protein kinase and chemotransduction in the carotid body. Respiratory Physiology and Neurobiology, 2007, 157, 22-29.	1.6	25
38	Organelle-specific Subunit Interactions of the Vertebrate Two-pore Channel Family. Journal of Biological Chemistry, 2015, 290, 1086-1095.	3.4	24
39	From contraction to gene expression: nanojunctions of the sarco/endoplasmic reticulum deliver site- and function-specific calcium signals. Science China Life Sciences, 2016, 59, 749-763.	4.9	22
40	The emerging role of AMPK in the regulation of breathing and oxygen supply. Biochemical Journal, 2016, 473, 2561-2572.	3.7	19
41	AMP-Activated Protein Kinase Couples Mitochondrial Inhibition by Hypoxia to Cell-Specific Ca2+ Signalling Mechanisms in Oxygensensing Cells. Novartis Foundation Symposium, 0, , 234-258.	1.1	19
42	Inactivation of Corticotropin-Releasing Hormone–Induced Insulinotropic Role by High-Altitude Hypoxia. Diabetes, 2015, 64, 785-795.	0.6	17
43	Modulation of the LKB1-AMPK Signalling Pathway Underpins Hypoxic Pulmonary Vasoconstriction and Pulmonary Hypertension. Advances in Experimental Medicine and Biology, 2015, 860, 89-99.	1.6	16
44	The cell-wide web coordinates cellular processes by directing site-specific Ca2+ flux across cytoplasmic nanocourses. Nature Communications, 2019, 10, 2299.	12.8	14
45	The Role of Intracellular Ion Channels in Regulating Cytoplasmic Calcium in Pulmonary Arterial Smooth Muscle: Which Store and Where?. Advances in Experimental Medicine and Biology, 2010, 661, 57-76.	1.6	14
46	AMP-activated protein kinase couples mitochondrial inhibition by hypoxia to cell-specific Ca2+ signalling mechanisms in oxygen-sensing cells. Novartis Foundation Symposium, 2006, 272, 234-52; discussion 252-8, 274-9.	1.1	14
47	Ion Channel Regulation by the LKB1-AMPK Signalling Pathway: The Key to Carotid Body Activation by Hypoxia and Metabolic Homeostasis at the Whole Body Level. Advances in Experimental Medicine and Biology, 2012, 758, 81-90.	1.6	13
48	AMPK and the Need to Breathe and Feed: What's the Matter with Oxygen?. International Journal of Molecular Sciences, 2020, 21, 3518.	4.1	12
49	Hypoxic pulmonary vasoconstriction. Essays in Biochemistry, 2007, 43, 61-76.	4.7	12
50	AMPK breathing and oxygen supply. Respiratory Physiology and Neurobiology, 2019, 265, 112-120.	1.6	9
51	Does AMP-activated Protein Kinase Couple Inhibition of Mitochondrial Oxidative Phosphorylation by Hypoxia to Pulmonary Artery Constriction?. , 2006, 580, 147-154.		9
52	AMPK-α1 or AMPK-α2 Deletion in Smooth Muscles Does Not Affect the Hypoxic Ventilatory Response or Systemic Arterial Blood Pressure Regulation During Hypoxia. Frontiers in Physiology, 2018, 9, 655.	2.8	8
53	Tissue Specificity: The Role of Organellar Membrane Nanojunctions in Smooth Muscle Ca2+ Signaling. Advances in Experimental Medicine and Biology, 2017, 993, 321-342.	1.6	3
54	AMPK facilitates the hypoxic ventilatory response through non-adrenergic mechanisms at the brainstem. Pflugers Archiv European Journal of Physiology, 0, , .	2.8	3

A MARK EVANS

#	Article	IF	CITATIONS
55	LKB1 is the gatekeeper of carotid body chemosensing and the hypoxic ventilatory response. Communications Biology, 2022, 5, .	4.4	3
56	The Hypoxic Ventilatory Response is Blocked by AMPK Deletion in Catecholaminergic, but not Adrenergic Cells. FASEB Journal, 2019, 33, 551.12.	0.5	1
57	On a Magical Mystery Tour with 8-Bromo-Cyclic ADP-Ribose: From All-or-None Block to Nanojunctions and the Cell-Wide Web. Molecules, 2020, 25, 4768.	3.8	0
58	Ion channel regulation by the Lkb1â€AMPK signalling pathway: the key to carotid body activation by hypoxia and metabolic homeostasis at the whole body level. FASEB Journal, 2012, 26, 897.4.	0.5	0
59	Nuclear invaginations demarcate cytoplasmicâ€nanotubes for integrative calcium signalling to the nucleus. FASEB Journal, 2015, 29, 728.6.	0.5	0
60	AMPK-dependent modulation of breathing and oxygen supply: An emerging therapeutic strategy for sleep apnoea and pulmonary hypertension?. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, SY83-4.	0.0	0