Stefan Zielonka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4621353/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Antibody display technologies: selecting the cream of the crop. Biological Chemistry, 2022, 403, 455-477.	2.5	71
2	Beyond bispecificity: Controlled Fab arm exchange for the generation of antibodies with multiple specificities. MAbs, 2022, 14, 2018960.	5.2	17
3	Protein engineering & design: hitting new heights. Biological Chemistry, 2022, 403, 453-453.	2.5	0
4	Streamlining the Transition From Yeast Surface Display of Antibody Fragment Immune Libraries to the Production as IgG Format in Mammalian Cells. Frontiers in Bioengineering and Biotechnology, 2022, 10, .	4.1	9
5	Affinity Maturation of B7-H6 Translates into Enhanced NK Cell–Mediated Tumor Cell Lysis and Improved Proinflammatory Cytokine Release of Bispecific Immunoligands via NKp30 Engagement. Journal of Immunology, 2021, 206, 225-236.	0.8	32
6	Milking the Cow: Cattle-Derived Chimeric Ultralong CDR-H3 Antibodies and Their Engineered CDR-H3-Only Knobbody Counterparts Targeting Epidermal Growth Factor Receptor Elicit Potent NK Cell-Mediated Cytotoxicity. Frontiers in Immunology, 2021, 12, 742418.	4.8	11
7	Antibody Display Systems. Learning Materials in Biosciences, 2021, , 65-96.	0.4	2
8	Grabbing the Bull by Both Horns: Bovine Ultralong CDR-H3 Paratopes Enable Engineering of †Almost Natural' Common Light Chain Bispecific Antibodies Suitable For Effector Cell Redirection. Frontiers in Immunology, 2021, 12, 801368.	4.8	11
9	Specific Targeting of Lymphoma Cells Using Semisynthetic Anti-Idiotype Shark Antibodies. Frontiers in Immunology, 2020, 11, 560244.	4.8	7
10	Greatest Hits—Innovative Technologies for High Throughput Identification of Bispecific Antibodies. International Journal of Molecular Sciences, 2020, 21, 6551.	4.1	9
11	Biophysical and biochemical characterization of a VHH-based IgG-like bi- and trispecific antibody platform. MAbs, 2020, 12, 1812210.	5.2	22
12	A Generic Procedure for the Isolation of pH- and Magnesium-Responsive Chicken scFvs for Downstream Purification of Human Antibodies. Frontiers in Bioengineering and Biotechnology, 2020, 8, 688.	4.1	10
13	A One-Step Process for the Construction of Phage Display scFv and VHH Libraries. Molecular Biotechnology, 2020, 62, 228-239.	2.4	19
14	Isolation of Antigen-Specific VHH Single-Domain Antibodies by Combining Animal Immunization with Yeast Surface Display. Methods in Molecular Biology, 2020, 2070, 173-189.	0.9	17
15	Selection and Characterization of Anti-idiotypic Shark Antibody Domains. Methods in Molecular Biology, 2020, 2070, 191-209.	0.9	2
16	Rapid Generation of Chicken Immune Libraries for Yeast Surface Display. Methods in Molecular Biology, 2020, 2070, 289-302.	0.9	17
17	Chemical Modification of the Yeast Cell Surface Allows the Switch Between Display and Soluble Secretion of Full-Length Antibodies. Methods in Molecular Biology, 2020, 2070, 335-349.	0.9	2
18	Dual Function pH Responsive Bispecific Antibodies for Tumor Targeting and Antigen Depletion in Plasma. Frontiers in Immunology, 2019, 10, 1892.	4.8	26

STEFAN ZIELONKA

#	Article	IF	CITATIONS
19	Facile generation of antibody heavy and light chain diversities for yeast surface display by Golden Gate Cloning. Biological Chemistry, 2019, 400, 383-393.	2.5	24
20	Yeast Surface Display in Combination with Fluorescenceâ€activated Cell Sorting Enables the Rapid Isolation of Antibody Fragments Derived from Immunized Chickens. Biotechnology Journal, 2019, 14, 1800466.	3.5	30
21	A novel one-step approach for the construction of yeast surface display Fab antibody libraries. Microbial Cell Factories, 2018, 17, 3.	4.0	31
22	Shark attack: Haiantikörper für Biomedizin und Biotechnologie. BioSpektrum, 2018, 24, 142-145.	0.0	0
23	Isolation of pH-Sensitive Antibody Fragments by Fluorescence-Activated Cell Sorting and Yeast Surface Display. Methods in Molecular Biology, 2018, 1685, 311-331.	0.9	10
24	Generation of Semi-Synthetic Shark IgNAR Single-Domain Antibody Libraries. Methods in Molecular Biology, 2018, 1701, 147-167.	0.9	15
25	A Streamlined Approach for the Construction of Large Yeast Surface Display Fab Antibody Libraries. Methods in Molecular Biology, 2018, 1827, 145-161.	0.9	13
26	Construction of Histidine-Enriched Shark IgNAR Variable Domain Antibody Libraries for the Isolation of pH-Sensitive vNAR Fragments. Methods in Molecular Biology, 2018, 1827, 109-127.	0.9	3
27	Selection of Antibodies with Tailored Properties by Application of High-Throughput Multiparameter Fluorescence-Activated Cell Sorting of Yeast-Displayed Immune Libraries. Molecular Biotechnology, 2018, 60, 727-735.	2.4	10
28	Engineering IgG-Like Bispecific Antibodies—An Overview. Antibodies, 2018, 7, 28.	2.5	37
29	Engineering bispecific antibodies with defined chain pairing. New Biotechnology, 2017, 39, 167-173.	4.4	43
30	Semi-synthetic vNAR libraries screened against therapeutic antibodies primarily deliver anti-idiotypic binders. Scientific Reports, 2017, 7, 9676.	3.3	34
31	Camelid and shark single domain antibodies: structural features and therapeutic potential. Current Opinion in Structural Biology, 2017, 45, 10-16.	5.7	165
32	A simplified procedure for antibody engineering by yeast surface display: Coupling display levels and target binding by ribosomal skipping. Biotechnology Journal, 2017, 12, 1600454.	3.5	27
33	Isolation of a pH-Sensitive IgNAR Variable Domain from a Yeast-Displayed, Histidine-Doped Master Library. Marine Biotechnology, 2016, 18, 161-167.	2.4	31
34	Single-domain antibodies for biomedical applications. Immunopharmacology and Immunotoxicology, 2016, 38, 21-28.	2.4	64
35	The Shark Strikes Twice: Hypervariable Loop 2 of Shark IgNAR Antibody Variable Domains and Its Potential to Function as an Autonomous Paratope. Marine Biotechnology, 2015, 17, 386-392.	2.4	17
36	Structural insights and biomedical potential of IgNAR scaffolds from sharks. MAbs, 2015, 7, 15-25.	5.2	102

Stefan Zielonka

#	Article	IF	CITATIONS
37	A Chemoenzymatic Approach to Protein Immobilization onto Crystalline Cellulose Nanoscaffolds. Angewandte Chemie - International Edition, 2014, 53, 12618-12623.	13.8	48
38	Therapeutic antibody engineering by high efficiency cell screening. FEBS Letters, 2014, 588, 278-287.	2.8	95
39	Shark Attack: High affinity binding proteins derived from shark vNAR domains by stepwise in vitro affinity maturation. Journal of Biotechnology, 2014, 191, 236-245.	3.8	74