IstvÃ;n Andó

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4621192/publications.pdf

Version: 2024-02-01

40 papers

3,360 citations

279798 23 h-index 289244 40 g-index

44 all docs 44 docs citations

44 times ranked 2332 citing authors

#	Article	IF	CITATIONS
1	Broad Ultrastructural and Transcriptomic Changes Underlie the Multinucleated Giant Hemocyte Mediated Innate Immune Response against Parasitoids. Journal of Innate Immunity, 2022, 14, 335-354.	3.8	5
2	Immunoprofiling of Drosophila Hemocytes by Single-cell Mass Cytometry. Genomics, Proteomics and Bioinformatics, 2021, 19, 243-252.	6.9	5
3	Regression plane concept for analysing continuous cellular processes with machine learning. Nature Communications, 2021, 12, 2532.	12.8	8
4	Cellular Immune Response Involving Multinucleated Giant Hemocytes with Two-Step Genome Amplification in the Drosophilid <i>Zaprionus indianus</i> . Journal of Innate Immunity, 2020, 12, 257-272.	3.8	7
5	Identification of reference markers for characterizing honey bee (Apis mellifera) hemocyte classes. Developmental and Comparative Immunology, 2020, 109, 103701.	2.3	10
6	Two Nimrod receptors, NimC1 and Eater, synergistically contribute to bacterial phagocytosis in <i>DrosophilaÂmelanogaster</i> . FEBS Journal, 2019, 286, 2670-2691.	4.7	35
7	Headcase is a Repressor of Lamellocyte Fate in Drosophila melanogaster. Genes, 2019, 10, 173.	2.4	5
8	Hemolectin expression reveals functional heterogeneity in honey bee (Apis mellifera) hemocytes. Developmental and Comparative Immunology, 2017, 76, 403-411.	2.3	15
9	Genes encoding cuticular proteins are components of the Nimrod gene cluster in Drosophila. Insect Biochemistry and Molecular Biology, 2017, 87, 45-54.	2.7	15
10	The raspberry Gene Is Involved in the Regulation of the Cellular Immune Response in Drosophila melanogaster. PLoS ONE, 2016, 11, e0150910.	2.5	6
11	Transdifferentiation and Proliferation in Two Distinct Hemocyte Lineages in Drosophila melanogaster Larvae after Wasp Infection. PLoS Pathogens, 2016, 12, e1005746.	4.7	136
12	MiniCORVET is a Vps8-containing early endosomal tether in Drosophila. ELife, 2016, 5, .	6.0	50
13	The Nimrod transmembrane receptor Eater is required for hemocyte attachment to the sessile compartment in <i>Drosophila melanogaster</i>). Biology Open, 2015, 4, 355-363.	1.2	69
14	Multinucleated Giant Hemocytes Are Effector Cells in Cell-Mediated Immune Responses of <i> Drosophila</i> . Journal of Innate Immunity, 2015, 7, 340-353.	3.8	31
15	In Vivo Immunostaining of Hemocyte Compartments in Drosophila for Live Imaging. PLoS ONE, 2014, 9, e98191.	2.5	11
16	The cell-mediated immunity of Drosophila melanogaster: Hemocyte lineages, immune compartments, microanatomy and regulation. Developmental and Comparative Immunology, 2014, 42, 47-56.	2.3	162
17	Drosophila Nimrod proteins bind bacteria. Open Life Sciences, 2013, 8, 633-645.	1.4	5
18	Variation of NimC1 expression in <i>Drosophila</i> stocks and transgenic strains. Fly, 2013, 7, 263-268.	1.7	20

#	Article	IF	CITATIONS
19	Integrin $\hat{l}^2\hat{l}^{1/2}$ -mediated Phagocytosis of Apoptotic Cells in Drosophila Embryos. Journal of Biological Chemistry, 2011, 286, 25770-25777.	3.4	60
20	A conserved gene cluster as a putative functional unit in insect innate immunity. FEBS Letters, 2010, 584, 4375-4378.	2.8	19
21	Cell lineage tracing reveals the plasticity of the hemocyte lineages and of the hematopoietic compartments in Drosophila melanogaster. Molecular Immunology, 2010, 47, 1997-2004.	2.2	111
22	Sessile hemocytes as a hematopoietic compartment in <i>Drosophila melanogaster</i> . Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 4805-4809.	7.1	225
23	In vivo detection of lamellocytes in Drosophila melanogaster. Immunology Letters, 2009, 126, 83-84.	2.5	44
24	Evolution of Genes and Repeats in the Nimrod Superfamily. Molecular Biology and Evolution, 2008, 25, 2337-2347.	8.9	64
25	Nimrod, a Putative Phagocytosis Receptor with EGF Repeats in Drosophila Plasmatocytes. Current Biology, 2007, 17, 649-654.	3.9	291
26	Expression pattern of Filamin-240 in Drosophila blood cells. Gene Expression Patterns, 2006, 6, 928-934.	0.8	16
27	<i>Drosophila melanogaster</i> Rac2 is necessary for a proper cellular immune response. Genes To Cells, 2005, 10, 813-823.	1.2	94
28	Sterile wounding is a minimal and sufficient trigger for a cellular immune response in Drosophila melanogaster. Immunology Letters, 2005, 101, 108-111.	2.5	87
29	A directed screen for genes involved in $\langle i \rangle$ Drosophila $\langle i \rangle$ blood cell activation. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 14192-14197.	7.1	326
30	A rapid rosetting method for separation of hemocyte sub-populations of Drosophila melanogaster. Developmental and Comparative Immunology, 2004, 28, 555-563.	2.3	30
31	Yantar, a conserved arginine-rich protein is involved in Drosophila hemocyte development. Developmental Biology, 2004, 273, 48-62.	2.0	35
32	Hemese, a hemocyte-specific transmembrane protein, affects the cellular immune response in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 2622-2627.	7.1	148
33	Deletion of proteasomal subunit S5a/Rpn10/p54 causes lethality, multiple mitotic defects and overexpression of proteasomal genes inDrosophila melanogaster. Journal of Cell Science, 2003, 116, 1023-1033.	2.0	68
34	Analysis of Ras-Induced Overproliferation in Drosophila Hemocytes. Genetics, 2003, 163, 203-215.	2.9	262
35	Activation of the <i>Drosophila</i> NFâ€PB factor Relish by rapid endoproteolytic cleavage. EMBO Reports, 2000, 1, 347-352.	4.5	278
36	Relish, a Central Factor in the Control of Humoral but Not Cellular Immunity in Drosophila. Molecular Cell, 1999, 4, 827-837.	9.7	480

#	Article	IF	CITATION
37	Tumor promoter phorbol esters induce unresponsiveness to antigen and expression of interleukin 2 receptor on T cells. European Journal of Immunology, 1985, 15, 196-199.	2.9	58
38	Phorbol ester-induced expression and function of the interleukin 2 receptor in human B lymphocytes. European Journal of Immunology, 1985, 15, 341-344.	2.9	17
39	Self-MHC-restricted cytotoxic T-cell response without thymic influence. Nature, 1981, 289, 494-495.	27.8	38
40	Fine specificity of cytotoxic T lymphocytes: C57BL effector cells induced by autologous cells modified with hapten (4-hydroxy-3-nitro-phenyl)acetyl (NIP) are not heteroclitic. European Journal of Immunology, 1979, 9, 211-213.	2.9	13