Agnieszka Gambus

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4620738/publications.pdf Version: 2024-02-01

ACNIESZKA CAMBLIS

#	Article	IF	CITATIONS
1	The p97 segregase cofactor Ubxn7 facilitates replisome disassembly during S-phase. Journal of Biological Chemistry, 2022, 298, 102234.	3.4	11
2	MYBL2 and ATM suppress replication stress in pluripotent stem cells. EMBO Reports, 2021, 22, e51120.	4.5	15
3	Mechanisms of eukaryotic replisome disassembly. Biochemical Society Transactions, 2020, 48, 823-836.	3.4	11
4	A cell cycle-coordinated Polymerase II transcription compartment encompasses gene expression before global genome activation. Nature Communications, 2019, 10, 691.	12.8	42
5	Mitotic replisome disassembly depends on TRAIP ubiquitin ligase activity. Life Science Alliance, 2019, 2, e201900390.	2.8	39
6	CUL-2LRR-1 and UBXN-3 drive replisome disassembly during DNA replication termination andÂmitosis. Nature Cell Biology, 2017, 19, 468-479.	10.3	81
7	Termination of Eukaryotic Replication Forks. Advances in Experimental Medicine and Biology, 2017, 1042, 163-187.	1.6	14
8	Xenopus Mcm10 is a CDK-substrate required for replication fork stability. Cell Cycle, 2016, 15, 2183-2195.	2.6	23
9	Regulation of Unperturbed DNA Replication by Ubiquitylation. Genes, 2015, 6, 451-468.	2.4	15
10	Termination of DNA replication forks: "Breaking up is hard to do― Nucleus, 2015, 6, 187-196.	2.2	18
11	Polyubiquitylation drives replisome disassembly at the termination of DNA replication. Science, 2014, 346, 477-481.	12.6	161
12	The MCM8-MCM9 Complex Promotes RAD51 Recruitment at DNA Damage Sites To Facilitate Homologous Recombination. Molecular and Cellular Biology, 2013, 33, 1632-1644.	2.3	100
13	Mcm8 and Mcm9 form a dimeric complex in <i>Xenopus laevis</i> egg extract that is not essential for DNA replication initiation. Cell Cycle, 2013, 12, 1225-1232.	2.6	30
14	Preparation and use of Xenopus egg extracts to study DNA replication and chromatin associated proteins. Methods, 2012, 57, 203-213.	3.8	71
15	MCM2-7 Form Double Hexamers at Licensed Origins in Xenopus Egg Extract. Journal of Biological Chemistry, 2011, 286, 11855-11864.	3.4	123
16	A key role for Ctf4 in coupling the MCM2-7 helicase to DNA polymerase $\hat{I}\pm$ within the eukaryotic replisome. EMBO Journal, 2009, 28, 2992-3004.	7.8	238
17	A key role for the GINS complex at DNA replication forks. Trends in Cell Biology, 2007, 17, 271-278.	7.9	121
18	GINS maintains association of Cdc45 with MCM in replisome progression complexes at eukaryotic DNA replication forks. Nature Cell Biology, 2006, 8, 358-366.	10.3	696

#	Article	IF	CITATIONS
19	Functional proteomic identification of DNA replication proteins by induced proteolysis in vivo. Nature, 2003, 423, 720-725.	27.8	236