## Evgeny Kulesskiy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/461966/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                          | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Minimal information for chemosensitivity assays (MICHA): a next-generation pipeline to enable the FAIRification of drug screening experiments. Briefings in Bioinformatics, 2022, 23, .                          | 6.5  | 7         |
| 2  | High NRF2 Levels Correlate with Poor Prognosis in Colorectal Cancer Patients and with Sensitivity to the Kinase Inhibitor AT9283 In Vitro. Biomolecules, 2020, 10, 1365.                                         | 4.0  | 22        |
| 3  | Identification and Tracking of Antiviral Drug Combinations. Viruses, 2020, 12, 1178.                                                                                                                             | 3.3  | 48        |
| 4  | Phosphoproteome and drug-response effects mediated by the three protein phosphatase 2A inhibitor proteins CIP2A, SET, and PME-1. Journal of Biological Chemistry, 2020, 295, 4194-4211.                          | 3.4  | 48        |
| 5  | Chemical, Physical and Biological Triggers of Evolutionary Conserved Bcl-xL-Mediated Apoptosis.<br>Cancers, 2020, 12, 1694.                                                                                      | 3.7  | 13        |
| 6  | TBIO-18. ESTABLISHING A PIPELINE FOR INDIVIDUALIZED TREATMENT OPTIONS FOR PEDIATRIC BRAIN CANCER.<br>Neuro-Oncology, 2020, 22, iii470-iii470.                                                                    | 1.2  | 0         |
| 7  | Intertumoral heterogeneity in patient-specific drug sensitivities in treatment-naÃ <sup>-</sup> ve glioblastoma. BMC<br>Cancer, 2019, 19, 628.                                                                   | 2.6  | 55        |
| 8  | Feasibility study of using highâ€ŧhroughput drug sensitivity testing to target recurrent glioblastoma<br>stem cells for individualized treatment. Clinical and Translational Medicine, 2019, 8, 33.              | 4.0  | 20        |
| 9  | Anagrelide for Gastrointestinal Stromal Tumor. Clinical Cancer Research, 2019, 25, 1676-1687.                                                                                                                    | 7.0  | 14        |
| 10 | Methods for High-throughput Drug Combination Screening and Synergy Scoring. Methods in Molecular Biology, 2018, 1711, 351-398.                                                                                   | 0.9  | 140       |
| 11 | Drug-Sensitivity Screening and Genomic Characterization of 45 HPV-Negative Head and Neck Carcinoma<br>Cell Lines for Novel Biomarkers of Drug Efficacy. Molecular Cancer Therapeutics, 2018, 17, 2060-2071.      | 4.1  | 33        |
| 12 | PP2A inhibition is a druggable MEK inhibitor resistance mechanism in KRAS-mutant lung cancer cells.<br>Science Translational Medicine, 2018, 10, .                                                               | 12.4 | 116       |
| 13 | Systematic drug sensitivity testing reveals synergistic growth inhibition by dasatinib or mTOR<br>inhibitors with paclitaxel in ovarian granulosa cell tumor cells. Gynecologic Oncology, 2017, 144,<br>621-630. | 1.4  | 26        |
| 14 | Antiviral Properties of Chemical Inhibitors of Cellular Anti-Apoptotic Bcl-2 Proteins. Viruses, 2017, 9,<br>271.                                                                                                 | 3.3  | 39        |
| 15 | Phosphoproteomics to Characterize Host Response During Influenza A Virus Infection of Human<br>Macrophages. Molecular and Cellular Proteomics, 2016, 15, 3203-3219.                                              | 3.8  | 66        |
| 16 | HB-GAM (pleiotrophin) reverses inhibition of neural regeneration by the CNS extracellular matrix.<br>Scientific Reports, 2016, 6, 33916.                                                                         | 3.3  | 43        |
| 17 | HMGB4 is expressed by neuronal cells and affects the expression of genes involved in neural differentiation. Scientific Reports, 2016, 6, 32960.                                                                 | 3.3  | 14        |
| 18 | Precision Cancer Medicine in the Acoustic Dispensing Era: Ex Vivo Primary Cell Drug Sensitivity<br>Testing. Journal of the Association for Laboratory Automation, 2016, 21, 27-36.                               | 2.8  | 22        |

EVGENY KULESSKIY

| #  | Article                                                                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Antifungal Application of Nonantifungal Drugs. Antimicrobial Agents and Chemotherapy, 2014, 58, 1055-1062.                                                                                                                                                                          | 3.2 | 65        |
| 20 | A personalised medicine drug sensitivity and resistance testing platform and utilisation of acoustic droplet ejection at the Institute for Molecular Medicine Finland. Synergy, 2014, 1, 78.                                                                                        | 1.1 | 4         |
| 21 | Quantitative scoring of differential drug sensitivity for individually optimized anticancer therapies.<br>Scientific Reports, 2014, 4, 5193.                                                                                                                                        | 3.3 | 243       |
| 22 | Individualized Systems Medicine Strategy to Tailor Treatments for Patients with Chemorefractory<br>Acute Myeloid Leukemia. Cancer Discovery, 2013, 3, 1416-1429.                                                                                                                    | 9.4 | 334       |
| 23 | Transmembrane Prostatic Acid Phosphatase (TMPAP) Interacts with Snapin and Deficient Mice Develop<br>Prostate Adenocarcinoma. PLoS ONE, 2013, 8, e73072.                                                                                                                            | 2.5 | 28        |
| 24 | Ligand-induced dimerization of syndecan-3 at the cell surface. Advances in Bioscience and<br>Biotechnology (Print), 2013, 04, 36-44.                                                                                                                                                | 0.7 | 1         |
| 25 | Identification Of AML Subtype-Selective Drugs By Functional Ex Vivo Drug Sensitivity and Resistance<br>Testing and Genomic Profiling. Blood, 2013, 122, 482-482.                                                                                                                    | 1.4 | 0         |
| 26 | High-Throughput Ex Vivo Drug Sensitivity and Resistance Testing (DSRT) Integrated with Deep Genomic<br>and Molecular Profiling Reveal New Therapy Options with Targeted Drugs in Subgroups of Relapsed<br>Chemorefractory AML. Blood, 2012, 120, 288-288.                           | 1.4 | 1         |
| 27 | Heparan sulfate proteoglycan syndecan-3 is a novel receptor for GDNF, neurturin, and artemin.<br>Journal of Cell Biology, 2011, 192, 153-169.                                                                                                                                       | 5.2 | 164       |
| 28 | Development of a Cancer Pharmacopeia-Wide Ex-Vivo Drug Sensitivity and Resistance Testing (DSRT)<br>Platform: Identification of MEK and mTOR As Patient-Specific Molecular Drivers of Adult AML and<br>Potent Therapeutic Combinations with Dasatinib. Blood, 2011, 118, 2487-2487. | 1.4 | 0         |
| 29 | N-syndecan deficiency impairs neural migration in brain. Journal of Cell Biology, 2006, 174, 569-580.                                                                                                                                                                               | 5.2 | 114       |