Chris Van Hoof

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4619491/publications.pdf

Version: 2024-02-01

298 papers 8,987 citations

45 h-index 82 g-index

313 all docs

313 docs citations

times ranked

313

8041 citing authors

#	Article	IF	CITATIONS
1	Thermoelectric Converters of Human Warmth for Self-Powered Wireless Sensor Nodes. IEEE Sensors Journal, 2007, 7, 650-657.	4.7	323
2	A 60 \$mu\$W 60 nV/\$surd\$Hz Readout Front-End for Portable Biopotential Acquisition Systems. IEEE Journal of Solid-State Circuits, 2007, 42, 1100-1110.	5.4	308
3	A 345 ÂμW Multi-Sensor Biomedical SoC With Bio-Impedance, 3-Channel ECG, Motion Artifact Reduction, and Integrated DSP. IEEE Journal of Solid-State Circuits, 2015, 50, 230-244.	5.4	256
4	A 30 \$mu\$W Analog Signal Processor ASIC for Portable Biopotential Signal Monitoring. IEEE Journal of Solid-State Circuits, 2011, 46, 209-223.	5.4	246
5	Pseudo-Two-Dimensional Model for Double-Gate Tunnel FETs Considering the Junctions Depletion Regions. IEEE Transactions on Electron Devices, 2010, 57, 827-834.	3.0	223
6	Realization of a wearable miniaturized thermoelectric generator for human body applications. Sensors and Actuators A: Physical, 2009, 156, 95-102.	4.1	222
7	Harvesting energy from the motion of human limbs: the design and analysis of an impact-based piezoelectric generator. Smart Materials and Structures, 2009, 18, 035001.	3.5	218
8	A Configurable and Low-Power Mixed Signal SoC for Portable ECG Monitoring Applications. IEEE Transactions on Biomedical Circuits and Systems, 2014, 8, 257-267.	4.0	214
9	Prostate-specific antigen immunosensing based on mixed self-assembled monolayers, camel antibodies and colloidal gold enhanced sandwich assays. Biosensors and Bioelectronics, 2005, 21, 483-490.	10.1	209
10	A 200 νW Eight-Channel EEG Acquisition ASIC for Ambulatory EEG Systems. IEEE Journal of Solid-State Circuits, 2008, 43, 3025-3038.	5.4	199
11	Vital-sign monitoring and spatial tracking of multiple people using a contactless radar-based sensor. Nature Electronics, 2019, 2, 252-262.	26.0	190
12	CorNET: Deep Learning Framework for PPG-Based Heart Rate Estimation and Biometric Identification in Ambulant Environment. IEEE Transactions on Biomedical Circuits and Systems, 2019, 13, 282-291.	4.0	188
13	A \$160~mu {m W}\$ 8-Channel Active Electrode System for EEG Monitoring. IEEE Transactions on Biomedical Circuits and Systems, 2011, 5, 555-567.	4.0	187
14	Soft, Comfortable Polymer Dry Electrodes for High Quality ECG and EEG Recording. Sensors, 2014, 14, 23758-23780.	3.8	177
15	Heart Rate Estimation From Wrist-Worn Photoplethysmography: A Review. IEEE Sensors Journal, 2019, 19, 6560-6570.	4.7	157
16	A Neural Probe With Up to 966 Electrodes and Up to 384 Configurable Channels in 0.13 \$mu\$m SOI CMOS. IEEE Transactions on Biomedical Circuits and Systems, 2017, 11, 510-522.	4.0	151
17	Large-scale wearable data reveal digital phenotypes for daily-life stress detection. Npj Digital Medicine, 2018, 1, 67.	10.9	145
18	Time Multiplexed Active Neural Probe with 1356 Parallel Recording Sites. Sensors, 2017, 17, 2388.	3.8	141

#	Article	IF	CITATIONS
19	A 160 <formula formulatype="inline"><tex notation="TeX">\$mu{m A}\$</tex></formula> Biopotential Acquisition IC With Fully Integrated IA and Motion Artifact Suppression. IEEE Transactions on Biomedical Circuits and Systems, 2012, 6, 552-561.	4.0	126
20	ECG Signal Compression and Classification Algorithm With Quad Level Vector for ECG Holter System. IEEE Transactions on Information Technology in Biomedicine, 2010, 14, 93-100.	3.2	121
21	Active Electrodes for Wearable EEG Acquisition: Review and Electronics Design Methodology. IEEE Reviews in Biomedical Engineering, 2017, 10, 187-198.	18.0	118
22	A Wearable 8-Channel Active-Electrode EEG/ETI Acquisition System for Body Area Networks. IEEE Journal of Solid-State Circuits, 2014, 49, 2005-2016.	5.4	102
23	Capacitive Power Management Circuit for Micropower Thermoelectric Generators With a 1.4 \$mu\$A Controller. IEEE Journal of Solid-State Circuits, 2009, 44, 2824-2833.	5.4	100
24	Ultra-Low-Power Interface Chip for Autonomous Capacitive Sensor Systems. IEEE Transactions on Circuits and Systems Part 1: Regular Papers, 2007, 54, 130-140.	0.1	96
25	A 15-Channel Digital Active Electrode System for Multi-Parameter Biopotential Measurement. IEEE Journal of Solid-State Circuits, 2015, 50, 2090-2100.	5.4	92
26	Motion Artifact Reduction for Wrist-Worn Photoplethysmograph Sensors Based on Different Wavelengths. Sensors, 2019, 19, 673.	3.8	89
27	A 769 μW Battery-Powered Single-Chip SoC With BLE for Multi-Modal Vital Sign Monitoring Health Patches. IEEE Transactions on Biomedical Circuits and Systems, 2019, 13, 1506-1517.	4.0	87
28	A Multi(bio)sensor Acquisition System With Integrated Processor, Power Management, \$8 imes 8\$ LED Drivers, and Simultaneously Synchronized ECG, BIO-Z, GSR, and Two PPG Readouts. IEEE Journal of Solid-State Circuits, 2016, 51, 2584-2595.	5.4	80
29	Integrated Polarization Analyzing CMOS Image Sensor for Material Classification. IEEE Sensors Journal, 2011, 11, 1692-1703.	4.7	78
30	A Direct Phase-Tracking Doppler Radar Using Wavelet Independent Component Analysis for Non-Contact Respiratory and Heart Rate Monitoring. IEEE Transactions on Biomedical Circuits and Systems, 2018, 12, 632-643.	4.0	71
31	A high aspect ratio SU-8 fabrication technique for hollow microneedles for transdermal drug delivery and blood extraction. Journal of Micromechanics and Microengineering, 2010, 20, 064006.	2.6	70
32	Measurement and Analysis of Current Noise in Chopper Amplifiers. IEEE Journal of Solid-State Circuits, 2013, 48, 1575-1584.	5.4	70
33	Optimization of a piezoelectric unimorph for shock and impact energy harvesting. Smart Materials and Structures, 2007, 16, 1125-1135.	3.5	69
34	A 13 <formula formulatype="inline"><tex notation="TeX">\$mu {m A}\$</tex></formula> Analog Signal Processing IC for Accurate Recognition of Multiple Intra-Cardiac Signals. IEEE Transactions on Biomedical Circuits and Systems, 2013, 7, 785-795.	4.0	65
35	Ultra-low-power biopotential interfaces and their applications in wearable and implantable systems. Microelectronics Journal, 2009, 40, 1313-1321.	2.0	64
36	Into the Wild: The Challenges of Physiological Stress Detection in Laboratory and Ambulatory Settings. IEEE Journal of Biomedical and Health Informatics, 2019, 23, 463-473.	6.3	63

#	Article	IF	Citations
37	A silicon-based neural probe with densely-packed low-impedance titanium nitride microelectrodes for ultrahigh-resolution in vivo recordings. Biosensors and Bioelectronics, 2018, 106, 86-92.	10.1	61
38	5& amp; #x03BC; W-to-10mW input power range inductive boost converter for indoor photovoltaic energy harvesting with integrated maximum power point tracking algorithm. , 2011, , .		56
39	Hierarchical Carbon Nanowire Microarchitectures Made by Plasma-Assisted Pyrolysis of Photoresist. ACS Nano, 2011, 5, 6593-6600.	14.6	55
40	Correlation Between Electrode-Tissue Impedance and Motion Artifact in Biopotential Recordings. IEEE Sensors Journal, 2012, 12, 3373-3383.	4.7	55
41	Unsupervised heart-rate estimation in wearables with Liquid states and a probabilistic readout. Neural Networks, 2018, 99, 134-147.	5.9	55
42	A low-power, wireless, 8-channel EEG monitoring headset., 2010, 2010, 4197-200.		54
43	Biologically Inspired CMOS Image Sensor for Fast Motion and Polarization Detection. IEEE Sensors Journal, 2013, 13, 1065-1073.	4.7	53
44	Two-Dimensional Multi-Channel Neural Probes With Electronic Depth Control. IEEE Transactions on Biomedical Circuits and Systems, 2011, 5, 403-412.	4.0	51
45	18.3 A multi-parameter signal-acquisition SoC for connected personal health applications. , 2014, , .		49
46	Frequency-Tracking CW Doppler Radar Solving Small-Angle Approximation and Null Point Issues in Non-Contact Vital Signs Monitoring. IEEE Transactions on Biomedical Circuits and Systems, 2017, 11, 671-680.	4.0	49
47	Human++: From technology to emerging health monitoring concepts. , 2008, , .		48
48	A 172 \$mu\$W Compressively Sampled Photoplethysmographic (PPG) Readout ASIC With Heart Rate Estimation Directly From Compressively Sampled Data. IEEE Transactions on Biomedical Circuits and Systems, 2017, 11, 487-496.	4.0	48
49	Body-Heat Powered Autonomous Pulse Oximeter. , 2006, , .		46
50	22.7 A 966-electrode neural probe with 384 configurable channels in 0.13 ${\rm \hat{A}\mu m}$ SOI CMOS. , 2016, , .		46
51	A 400 GÎ \odot Input-Impedance Active Electrode for Non-Contact Capacitively Coupled ECG Acquisition With Large Linear-Input-Range and High CM-Interference-Tolerance. IEEE Transactions on Biomedical Circuits and Systems, 2019, 13, 376-386.	4.0	46
52	Evaluation of a Multichannel Non-Contact ECG System and Signal Quality Algorithms for Sleep Apnea Detection and Monitoring. Sensors, 2018, 18, 577.	3.8	45
53	Human++: Emerging Technology for Body Area Networks. , 2006, , .		44
54	A 0.6-V, 0.015-mm ² , Time-Based ECG Readout for Ambulatory Applications in 40-nm CMOS. IEEE Journal of Solid-State Circuits, 2017, 52, 298-308.	5 . 4	44

#	Article	IF	Citations
55	A 665 μW Silicon Photomultiplier-Based NIRS/EEG/EIT Monitoring ASIC for Wearable Functional Brain Imaging. IEEE Transactions on Biomedical Circuits and Systems, 2018, 12, 1267-1277.	4.0	44
56	A 200μW Eight-Channel Acquisition ASIC for Ambulatory EEG Systems. , 2008, , .		41
57	Wearable sensors: can they benefit patients with chronic kidney disease?. Expert Review of Medical Devices, 2017, 14, 505-519.	2.8	41
58	BiometricNet: Deep Learning based Biometric Identification using Wrist-Worn PPG., 2018,,.		41
59	Artefact detection and quality assessment of ambulatory ECG signals. Computer Methods and Programs in Biomedicine, 2019, 182, 105050.	4.7	38
60	Enabling Robust Radar-Based Localization and Vital Signs Monitoring in Multipath Propagation Environments. IEEE Transactions on Biomedical Engineering, 2021, 68, 3228-3240.	4.2	37
61	The Photodetector Array Camera and Spectrometer (PACS) for the Herschel Space Observatory. Proceedings of SPIE, 2008, , .	0.8	35
62	A High Voltage Self-Biased Integrated DC-DC Buck Converter With Fully Analog MPPT Algorithm for Electrostatic Energy Harvesters. IEEE Journal of Solid-State Circuits, 2013, 48, 3002-3010.	5.4	35
63	A Bio-Impedance Readout IC With Digital-Assisted Baseline Cancellation for Two-Electrode Measurement. IEEE Journal of Solid-State Circuits, 2019, 54, 2969-2979.	5.4	35
64	Hybrid Thermoelectric–Photovoltaic Generators in Wireless Electroencephalography Diadem and Electrocardiography Shirt. Journal of Electronic Materials, 2010, 39, 1674-1680.	2.2	34
65	A 160μW 8-channel active electrode system for EEG monitoring., 2011,,.		34
66	A 680 nA ECG Acquisition IC for Leadless Pacemaker Applications. IEEE Transactions on Biomedical Circuits and Systems, 2014, 8, 779-786.	4.0	34
67	Time multiplexed active neural probe with 678 parallel recording sites. , 2016, , .		34
68	A 36 \hat{l}_4 W 1.1 mm ² Reconfigurable Analog Front-End for Cardiovascular and Respiratory Signals Recording. IEEE Transactions on Biomedical Circuits and Systems, 2018, 12, 774-783.	4.0	34
69	Extended wavelength InGaAs on GaAs using InAlAs buffer for back-side-illuminated short-wave infrared detectors. Applied Physics Letters, 2003, 82, 2838-2840.	3.3	31
70	Wearable Autonomous Wireless Electro-encephalography System Fully Powered by Human Body Heat. , 2008, , .		31
71	Wearable Sensors for Healthier Pregnancies. Proceedings of the IEEE, 2015, 103, 179-191.	21.3	31
72	A 119dB Dynamic Range Charge Counting Light-to-Digital Converter For Wearable PPG/NIRS Monitoring Applications. IEEE Transactions on Biomedical Circuits and Systems, 2020, 14, 800-810.	4.0	30

#	Article	IF	Citations
73	A cryogenic analog to digital converter operating from 300 K down to 4.4 K. Review of Scientific Instruments, 2010, 81, 024702.	1.3	29
74	28.4A battery-powered efficient multi-sensor acquisition system with simultaneous ECG, BIO-Z, GSR, and PPG. , $2016,$, .		29
75	A 30µW Analog Signal Processor ASIC for biomedical signal monitoring. , 2010, , .		28
76	A low power ECG signal processor for ambulatory arrhythmia monitoring system. , 2010, , .		28
77	Comparison of Machine Learning Techniques for Psychophysiological Stress Detection. Communications in Computer and Information Science, 2016, , 13-22.	0.5	28
78	Thermoelectric and Hybrid Generators in Wearable Devices and Clothes. , 2009, , .		27
79	SU8 etch mask for patterning PDMS and its application to flexible fluidic microactuators. Microsystems and Nanoengineering, 2016, 2, 16045.	7.0	27
80	Binary CorNET: Accelerator for HR Estimation From Wrist-PPG. IEEE Transactions on Biomedical Circuits and Systems, 2020, 14, 715-726.	4.0	27
81	Biologically inspired autonomous agent navigation using an integrated polarization analyzing CMOS image sensor. Procedia Engineering, 2010, 5, 673-676.	1.2	26
82	A low power configurable bio-impedance spectroscopy (BIS) ASIC with simultaneous ECG and respiration recording functionality. , 2015 , , .		26
83	Potential and challenges of body area networks for personal health. , 2009, 2009, 6569-72.		24
84	Extreme ultraviolet detection using AlGaN-on-Si inverted Schottky photodiodes. Applied Physics Letters, 2011, 98, .	3.3	24
85	22.4 A 172 µW compressive sampling photoplethysmographic readout with embedded direct heart-rate and variability extraction from compressively sampled data. , 2016, , .		24
86	Wearable Multiple Modality Bio-Signal Recording and Processing on Chip: A Review. IEEE Sensors Journal, 2021, 21, 1108-1123.	4.7	24
87	Development of vertical and tapered via etch for 3D through wafer interconnect technology. , 2006, , .		23
88	Low-Power Low-Noise 8-Channel EEG Front-End ASIC for Ambulatory Acquisition Systems. , 2006, , .		23
89	Characterization and optimization of polycrystalline Si _{70%} Ge _{30%} for surface micromachined thermopiles in human body applications. Journal of Micromechanics and Microengineering, 2009, 19, 094011.	2.6	23
90	Challenges for Capillary Self-Assembly of Microsystems. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2011, 1, 133-149.	2.5	23

#	Article	IF	Citations
91	Motion artifact reduction in ambulatory ECG monitoring. , 2011, , .		22
92	A self-biased 5-to-60V input voltage and 25-to-1600& $\#x00B5$; W integrated DC-DC buck converter with fully analog MPPT algorithm reaching up to 88% end-to-end efficiency. , 2013, , .		22
93	Wearable Monitoring and Interpretable Machine Learning Can Objectively Track Progression in Patients during Cardiac Rehabilitation. Sensors, 2020, 20, 3601.	3.8	22
94	The LEDA512 integrated circuit anode array for the analog recording of mass spectra. International Journal of Mass Spectrometry, 2002, 215, 77-87.	1.5	21
95	High-density hybrid interconnect methodologies. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2004, 531, 202-208.	1.6	21
96	Congestive heart failure patient monitoring using wearable Bio-impedance sensor technology. , 2015, 2015, 438-41.		21
97	Finite aperture correction for spectral cameras with integrated thin-film Fabry–Perot filters. Applied Optics, 2018, 57, 7539.	1.8	21
98	Physiological Driver Monitoring Using Capacitively Coupled and Radar Sensors. Applied Sciences (Switzerland), 2019, 9, 3994.	2.5	21
99	A Near-Infrared Enhanced Silicon Single-Photon Avalanche Diode With a Spherically Uniform Electric Field Peak. IEEE Electron Device Letters, 2021, 42, 879-882.	3.9	21
100	Pulse Arrival Time Segmentation Into Cardiac and Vascular Intervals – Implications for Pulse Wave Velocity and Blood Pressure Estimation. IEEE Transactions on Biomedical Engineering, 2021, 68, 2810-2820.	4.2	21
101	An 8-Bit Flash Analog-to-Digital Converter in Standard CMOS Technology Functional From 4.2 K to 300 K. IEEE Journal of Solid-State Circuits, 2009, 44, 2019-2025.	5 . 4	20
102	Ion-pair reversed-phase chromatography of short double-stranded deoxyribonucleic acid in silicon micro-pillar array columns: Retention model and applications. Journal of Chromatography A, 2013, 1294, 1-9.	3.7	20
103	Health-care improvements in a financially constrained environment. Lancet, The, 2016, 387, 646-647.	13.7	20
104	Poly-SiGe, a superb material for MEMS. Materials Research Society Symposia Proceedings, 2003, 782, 1.	0.1	19
105	A 2.4& \pm x00B5; A continuous-time electrode-skin impedance measurement circuit for motion artifact monitoring in ECG acquisition systems. , 2010, , .		19
106	Charge injection and storage in single-layer and multilayer inorganic electrets based on SiO ₂ and Si ₃ N ₄ . IEEE Transactions on Dielectrics and Electrical Insulation, 2012, 19, 1253-1260.	2.9	19
107	A bio-impedance readout IC with frequency sweeping from $1k$ -to- $1MHz$ for electrical impedance tomography. , 2017 , , .		19
108	High performance Hybrid and Monolithic Backside Thinned CMOS Imagers realized using a new integration process. , 2006 , , .		18

#	Article	IF	CITATIONS
109	The NeuroProbes project: A concept for electronic depth control. , 2008, 2008, 1857.		18
110	Integrated polarization analyzing CMOS Image sensor for autonomus navigation using polarized light. , 2010, , .		18
111	Integrated Polarization-Analyzing CMOS Image Sensor for Detecting the Incoming Light Ray Direction. IEEE Transactions on Instrumentation and Measurement, 2011, 60, 2759-2767.	4.7	18
112	Ultra-Thin Chip Package (UTCP) and stretchable circuit technologies for wearable ECG system. , 2011, 2011, 6886-9.		18
113	A 108 dB DR î"â"-â"M Front-End With 720 mV _{pp} Input Range and >±300 mV Offset Removal for Multi-Parameter Biopotential Recording. IEEE Transactions on Biomedical Circuits and Systems, 2021, 15, 199-209.	4.0	18
114	PHYSICS: The Best Materials for Tiny, Clever Sensors. Science, 2004, 306, 986-987.	12.6	17
115	Power-efficient readout circuit for miniaturized electronic nose. , 2012, , .		17
116	A 155 /spl mu/W 88-dB DR Discrete-Time /spl Delta/ /spl Sigma/ Modulator for Digital Hearing Aids Exploiting a Summing SAR ADC Quantizer. IEEE Transactions on Biomedical Circuits and Systems, 2013, 7, 573-582.	4.0	17
117	Motion artifact reduction in EEG recordings using multi-channel contact impedance measurements. , 2013, , .		17
118	24.4A 680nA fully integrated implantable ECG-acquisition IC with analog feature extraction. , $2014, \ldots$		17
119	The Added Value of In-Hospital Tracking of the Efficacy of Decongestion Therapy and Prognostic Value of a Wearable Thoracic Impedance Sensor in Acutely Decompensated Heart Failure With Volume Overload: Prospective Cohort Study. JMIR Cardio, 2020, 4, e12141.	1.7	17
120	Sequential hole tunneling inn-type AlAs/GaAs resonant-tunneling structures from time-resolved photoluminescence. Physical Review B, 1992, 46, 6982-6989.	3.2	16
121	Influence of Extreme Thinning on 130-nm Standard CMOS Devices for 3-D Integration. IEEE Electron Device Letters, 2008, 29, 322-324.	3.9	16
122	P300 Detection Based on Feature Extraction in On-line Brain-Computer Interface. Lecture Notes in Computer Science, 2009, , 339-346.	1.3	16
123	Power-Efficient Oscillator-Based Readout Circuit for Multichannel Resonant Volatile Sensors. IEEE Transactions on Biomedical Circuits and Systems, 2012, 6, 542-551.	4.0	16
124	Fabrication process for tall, sharp, hollow, high aspect ratio polymer microneedles on a platform. Journal of Micromechanics and Microengineering, 2013, 23, 075023.	2.6	16
125	Measurement and Analysis of Input-Signal Dependent Flicker Noise Modulation in Chopper Stabilized Instrumentation Amplifier. IEEE Solid-State Circuits Letters, 2018, 1, 90-93.	2.0	16
126	Miniaturized Electronic Circuit Design Challenges for Ingestible Devices. Journal of Microelectromechanical Systems, 2020, 29, 645-652.	2.5	16

#	Article	IF	CITATIONS
127	AlGaN-on-Si-Based 10-\$muhbox{m}\$ Pixel-to-Pixel Pitch Hybrid Imagers for the EUV Range. IEEE Electron Device Letters, 2011, 32, 1561-1563.	3.9	15
128	Silicon Based System for Single-Nucleotide-Polymorphism Detection: Chip Fabrication and Thermal Characterization of Polymerase Chain Reaction Microchamber. Japanese Journal of Applied Physics, 2012, 51, 04DL01.	1.5	15
129	24.7 A 60nV/√Hz 15-channel digital active electrode system for portable biopotential signal acquisition., 2014,,.		15
130	20.8 A 500nW batteryless integrated electrostatic energy harvester interface based on a DC-DC converter with 60V maximum input voltage and operating from $1\&m \#x03BC; W$ available power, including MPPT and cold start., $2015,$		15
131	Unsupervised Learning for Mental Stress Detection. , 2018, , .		15
132	Characteristics of InAs0.8Sb0.2photodetectors on GaAs substrates. Semiconductor Science and Technology, 2001, 16, 992-996.	2.0	14
133	A Cryogenic ADC operating Down to 4.2K. , 2007, , .		14
134	Ultra low power wireless ECG system with beat detection and real time impedance measurement. , 2010, , .		14
135	Capacitive multi-electrode array with real-time electrode selection for unobtrusive ECG & amp; BIOZ monitoring., 2019, 2019, 5621-5624.		14
136	A Power-Optimal Design Methodology for High-Resolution Low-Bandwidth SC \$DeltaSigma\$ Modulators. IEEE Transactions on Instrumentation and Measurement, 2012, 61, 2896-2904.	4.7	13
137	Self-calibration of walking speed estimations using smartphone sensors. , 2014, , .		13
138	Multiplexed site-specific electrode functionalization for multitarget biosensors. Bioelectrochemistry, 2016, 112, 61-66.	4.6	13
139	An Energy-Efficient and Reconfigurable Sensor IC for Bio-Impedance Spectroscopy and ECG Recording. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2018, 8, 616-626.	3.6	13
140	Using Biosensors and Digital Biomarkers to Assess Response to Cardiac Rehabilitation: Observational Study. Journal of Medical Internet Research, 2020, 22, e17326.	4.3	13
141	Relationship Between Chronic Stress and Heart Rate Over Time Modulated by Gender in a Cohort of Office Workers: Cross-Sectional Study Using Wearable Technologies. Journal of Medical Internet Research, 2020, 22, e18253.	4.3	13
142	The photodetector array camera and spectrometer (PACS) for the Herschel Space Observatory. , 2006, 6265, 69.		12
143	Leveling of Microvias by Electroplating for Wafer Level Packaging. ECS Transactions, 2007, 6, 123-133.	0.5	12
144	Scaling the Suspended-Gate FET: Impact of Dielectric Charging and Roughness. IEEE Transactions on Electron Devices, 2010, 57, 804-813.	3.0	12

#	Article	IF	Citations
145	Computationally-efficient compressive sampling for low-power pulseoximeter system. , 2014, , .		12
146	Sensor Fusion of Capacitively Coupled ECG and Continuous-Wave Doppler Radar for Improved Unobtrusive Heart Rate Measurements. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2018, 8, 316-328.	3.6	12
147	A Data Driven Empirical Iterative Algorithm for GSR Signal Pre-Processing. , 2018, , .		12
148	A $196\hat{1}$ /4W, Reconfigurable Light-to-Digital Converter with 119 dB Dynamic Range, for Wearable PPG/NIRS Sensors. , 2019, , .		12
149	Digital Linear Discrete FMCW Radar for Healthcare Applications. , 2019, , .		12
150	Towards personalized fluid monitoring in haemodialysis patients: thoracic bioimpedance signal shows strong correlation with fluid changes, a cohort study. BMC Nephrology, 2020, 21, 264.	1.8	12
151	Assessing the signal quality of electrocardiograms from varied acquisition sources: A generic machine learning pipeline for model generation. Computers in Biology and Medicine, 2021, 130, 104164.	7.0	12
152	Wearable Bioimpedance Monitoring: Viewpoint for Application in Chronic Conditions. JMIR Biomedical Engineering, 2021, 6, e22911.	1.2	12
153	Development of imaging arrays for solar UV observations based on wide band gap materials. , 2004, , .		11
154	Saw-tooth vernier ratchets for electrostatic inchworm actuators. Sensors and Actuators A: Physical, 2009, 156, 66-71.	4.1	11
155	Integrated polarization-analyzing CMOS image sensor for detecting incoming light ray direction. , 2010, , .		11
156	Integrated polarization-analyzing CMOS image sensor. , 2010, , .		11
157	Renewable energy microsystems integrated in maintenance-free wearable and textile-based devices: The capabilities and challenges. , 2010, , .		11
158	A 160& $\#x03BC$; A biopotential acquisition ASIC with fully integrated IA and motion-artifact suppression. , 2012, , .		11
159	24-channel dual-band wireless neural recorder with activity-dependent power consumption., 2013,,.		11
160	Intraneural active probe for bidirectional peripheral nerve interface., 2017,,.		11
161	A Backside-Illuminated Charge-Focusing Silicon SPAD With Enhanced Near-Infrared Sensitivity. IEEE Transactions on Electron Devices, 2022, 69, 1129-1136.	3.0	11
162	InSb infrared p–i–n photodetectors grown on GaAs coated Si substrates by molecular beam epitaxy. Solid-State Electronics, 1998, 42, 1039-1044.	1.4	10

#	Article	IF	Citations
163	Effect of deposition parameters on the stress gradient of CVD and PECVD poly-SiGe for MEMS applications. , 2004, , .		10
164	A 700µW 8-channel EEG/contact-impedance acquisition system for dry-electrodes. , 2012, , .		10
165	Highâ€Damping Carbon Nanotube Hinged Micromirrors. Small, 2012, 8, 2006-2010.	10.0	10
166	A novel feature extraction algorithm for on the sensor node processing of compressive sampled photoplethysmography signals. , 2015, , .		10
167	Relation between estimated cardiorespiratory fitness and running performance in free-living: An analysis of HRV4Training data., 2017,,.		10
168	A Compact, Low-Power Analog Front-End With Event-Driven Input Biasing for High-Density Neural Recording in 22-nm FDSOI. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69, 804-808.	3.0	10
169	Vignetted-aperture correction for spectral cameras with integrated thin-film Fabry–Perot filters. Applied Optics, 2019, 58, 1789.	1.8	10
170	Color lens-free imaging using multi-wavelength illumination based phase retrieval. Optics Express, 2020, 28, 33002.	3.4	10
171	Low-noise low-power readout electronics circuit development in standard CMOS technology for 4 K applications. , 2006, , .		9
172	A 20& #x00B5; W intra-cardiac signal-processing IC with 82dB bio-impedance measurement dynamic range and analog feature extraction for ventricular fibrillation detection. , 2013, , .		9
173	A 0.6V 3.8μW ECG/bio-impedance monitoring IC for disposable health patch in 40nm CMOS. , 2018, , .		9
174	22.1 A $769 \hat{l} \mbox{1/$4W}$ Battery-Powered Single-Chip SoC With BLE for Multi-Modal Vital Sign Health Patches. , $2019,$, .		9
175	Real-time HR Estimation from wrist PPG using Binary LSTMs. , 2019, , .		9
176	Artefact Detection in Impedance Pneumography Signals: A Machine Learning Approach. Sensors, 2021, 21, 2613.	3.8	9
177	A 134 DB Dynamic Range Noise Shaping Slope Light-to-Digital Converter for Wearable Chest PPG Applications. IEEE Transactions on Biomedical Circuits and Systems, 2021, 15, 1224-1235.	4.0	9
178	Capacitive Power-Management Circuit for Micropower Thermoelectric Generators with a $2.1 {\rm \^{A}}_{\cline{L}}W$ Controller. Digest of Technical Papers - IEEE International Solid-State Circuits Conference, 2008, , .	0.0	8
179	Reduction of Electrical Crosstalk in Hybrid Backside Illuminated CMOS Imagers using Deep Trench Isolation. , 2008, , .		8
180	10 & amp; #x00B5; m pixel-to-pixel pitch hybrid backside illuminated AlGaN-on-Si imagers for solar blind EUV radiation detection., 2010,,.		8

#	Article	IF	CITATIONS
181	Real time digitally assisted analog motion artifact reduction in ambulatory ECG monitoring system. , 2012, 2012, 2096-9.		8
182	Design, fabrication and testing of wafer-level thin film vacuum packages for MEMS based on nanoporous alumina membranes. Sensors and Actuators A: Physical, 2013, 189, 218-232.	4.1	8
183	A Wearable Wrist-Band with Compressive Sensing based Ultra-Low Power Photoplethysmography Readout Circuit. , 2019, , .		8
184	$22.5~\mbox{A}$ Bio-Impedance Readout IC With Digital-Assisted Baseline Cancellation for 2-Electrode Measurement. , $2019,$, .		8
185	Nightingale V2: Low-power Compact-sized Multi-Sensor Platform for Wearable Health Monitoring. , 2019, 2019, 1290-1293.		8
186	The photodetector array camera and spectrometer (PACS) for the Herschel Space Observatory. , 2004, , .		8
187	Early results on wrist based heart rate monitoring using mechanical transducers., 2010, 2010, 4407-10.		7
188	A mixed signal ECG processing platform with an adaptive sampling ADC for portable monitoring applications., 2011, 2011, 2196-9.		7
189	A 5-Channel Unipolar Fetal-ECG Readout IC for Patch-Based Fetal Monitoring. IEEE Solid-State Circuits Letters, 2019, 2, 71-74.	2.0	7
190	An Artificial Iris ASIC With High Voltage Liquid Crystal Driver, 10-nA Light Range Detector and 40-nA Blink Detector for LCD Flicker Removal. IEEE Solid-State Circuits Letters, 2020, 3, 506-509.	2.0	7
191	A 50μW Fully Differential Interface Amplifier With a Current Steering Class AB Output Stage for PPG and NIRS Recordings. IEEE Transactions on Circuits and Systems II: Express Briefs, 2020, 67, 1564-1568.	3.0	7
192	Characterization of interconnects resulting from capillary die-to-substrate self-assembly. , 2008, , .		6
193	An Integrated Circuit for Wireless Ambulatory Arrhythmia Monitoring Systems. , 2009, 2009, 5409-12.		6
194	Two-dimensional multi-channel neural probes with electronic depth control., 2010,,. Multilayer Inorganic Electrets with mml:math		6
195	xmins:mmi="http://www.w3.org/1998/Math/Math/M2***.cmmi:mrow> <mmi:msub><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:m< th=""><th></th><th></th></mmi:m<></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:msub>		
196	mathvariant="bold">4 L. Smart Materials Research, Measurement and analysis of input current noise in chopper amplifiers., 2012,,.		6
197	Motion artifact removal using cascade adaptive filtering for ambulatory ECG monitoring system. , 2012, , .		6
198	Charge Retention in a Patterned $fm SiO_{2}/m Si_{3}/m N_{4}\$ Electret. IEEE Sensors Journal, 2013, 13, 3369-3376.	4.7	6

#	Article	IF	CITATIONS
199	Development of Gated Pinned Avalanche Photodiode Pixels for High-Speed Low-Light Imaging. Sensors, 2016, 16, 1294.	3.8	6
200	A 6651-4W silicon photomultiplier-based NIRS/EEG/EIT monitoring asic for wearable functional brain imaging. , 2018, , .		6
201	Ambulatory Smoking Habits Investigation based on Physiology and Context (ASSIST) using wearable sensors and mobile phones: protocol for an observational study. BMJ Open, 2019, 9, e028284.	1.9	6
202	A complementary metal–oxide–semiconductor anode array chip with two rows of 512 anodes and dual integrated analog read-out circuitry. Review of Scientific Instruments, 2000, 71, 4300.	1.3	5
203	Extended-wavelength InGaAs on GaAs hybrid image sensors. , 2003, , .		5
204	Development of a Si:As blocked impurity band detector for far IR detection. Proceedings of SPIE, 2007, ,	0.8	5
205	A biologically inspired CMOS image sensor for polarization and fast motion detection. , 2011, , .		5
206	A third-order complementary metal–oxide–semiconductor sigma-delta modulator operating between 4.2 K and 300 K. Review of Scientific Instruments, 2012, 83, 024708.	1.3	5
207	SiGe MEMS at processing temperatures below 250 °C. Sensors and Actuators A: Physical, 2012, 188, 230-239.	4.1	5
208	Digital IF phase-tracking doppler radar for accurate displacement measurements and vital signs monitoring. , 2017 , , .		5
209	A 400GΩ Input-Impedance, 220MV <inf>pp</inf> Linear-Input-Range, 2.8V <inf>pp</inf> CM-Interference-Tolerant Active Electrode for Non-Contact Capacitively Coupled ECG Acquisition., 2018,,.		5
210	Comparing taskâ€induced psychophysiological responses between persons with stressâ€related complaints and healthy controls: A methodological pilot study. Health Science Reports, 2018, 1, e60.	1.5	5
211	BioTranslator: Inferring R-Peaks from Ambulatory Wrist-Worn PPG Signal. , 2019, 2019, 4241-4245.		5
212	Twenty-Four-Hour Heart Rate Is a Trait but Not State Marker for Depression in a Pilot Randomized Controlled Trial With a Single Infusion of Ketamine. Frontiers in Psychiatry, 2021, 12, 696170.	2.6	5
213	Metal induced crystallization of SiGe at 370°C for monolithically integrated MEMS applications. Materials Research Society Symposia Proceedings, 2004, 808, 12.	0.1	4
214	A low-noise low-power readout electronics circuit at 4 K in standard CMOS technology for PACS/Herschel., 2004, 5498, 622.		4
215	Is there a sweet spot for energy harvesting?. , 2009, , .		4
216	Thermomechanical design and modeling of porous alumina-based thin film packages for MEMS. , 2010, , .		4

#	Article	IF	Citations
217	Backside illuminated AlGaNâ€onâ€Si UV detectors integrated by high density flipâ€chip bonding. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 2476-2478.	0.8	4
218	A 1-V 99-to-75dB SNDR, 256Hz& $\#$ x2013;16kHz bandwidth, 8.6-to-39& $\#$ x00B5; W reconfigurable SC & amp; $\#$ x0394;& $\#$ x03A3; Modulator for autonomous biomedical applications., 2013,,.		4
219	A $36\hat{l}4$ W reconfigurable analog front-end IC for multimodal vital signs monitoring. , 2017 , , .		4
220	Bioimpedance Method for Human Body Hydration Assessment. , 2019, 2019, 6036-6039.		4
221	A 256-Channel Actively-Multiplexed ÂμECoG Implant with Column-Parallel Incremental \$DeltaSigma\$ ADCs Employing Bulk-DACs in 22-nm FDSOI Technology. , 2022, , .		4
222	Laser-Induced Crystallization of SiGe MEMS Structural Layers Deposited at Temperatures Below 250°C. Materials Research Society Symposia Proceedings, 2009, 1153, 1.	0.1	3
223	Enhanced broadband (11-15 Ã,µm) QWIP FPAs for space applications. Proceedings of SPIE, 2010, , .	0.8	3
224	Agent-based modeling of mems fluidic self-assembly. , 2010, , .		3
225	Elution behavior of short ds <scp>DNA</scp> strands in silicon micropillar array columns in ion pair reversedâ€phase chromatography mode. Electrophoresis, 2012, 33, 3205-3212.	2.4	3
226	$28.5~\rm{A}~0.6V~0.015mm2$ time-based biomedical readout for ambulatory applications in 40nm CMOS. , 2016, , .		3
227	Direct on-chip DNA synthesis using electrochemically modified gold electrodes as solid support. Japanese Journal of Applied Physics, 2018, 57, 04FM01.	1.5	3
228	An Ultra-low Power, Robust Photoplethysmographic Readout Exploiting Compressive Sampling, Artifact Reduction, and Sensor Fusion., 2018, , 145-163.		3
229	Toward Quantifying the Psychopathology of Eating Disorders From the Autonomic Nervous System Perspective: A Methodological Approach. Frontiers in Neuroscience, 2019, 13, 606.	2.8	3
230	Design and Characterization of a Biocompatible Packaging Concept for Implantable Electronic Devices. Journal of Microelectronics and Electronic Packaging, 2012, 9, 43-50.	0.7	3
231	Thin-film interference filters illuminated by tilted apertures. Applied Optics, 2020, 59, A112.	1.8	3
232	LSTM-only Model for Low-complexity HR Estimation from Wrist PPG. , 2021, 2021, 1068-1071.		3
233	Measuring Health-Related Quality of Life With Multimodal Data: Viewpoint. Journal of Medical Internet Research, 2022, 24, e35951.	4.3	3
234	Polycrystalline SiGe technology for uncooled microbolometer arrays. , 2003, , .		2

#	Article	IF	Citations
235	Ultra-low power biopotential interfaces and their application in wearable and implantable systems. , 2007, , .		2
236	Process technology for the fabrication of a Chip-in-Wire style packaging. , 2008, , .		2
237	An IC-centric biocompatible chip encapsulation fabrication process. , 2010, , .		2
238	Selective laser annealing for improved SiGe MEMS structural layers at 210°C., 2010,,.		2
239	A biologically inspired collision detection algorithm using differential optic flow imaging. , 2010, , .		2
240	Development of cost-effective biocompatible packaging for microelectronic devices., 2011, 2011, 7674-7.		2
241	First Demonstration of Hybrid CMOS Imagers With Simultaneous Very Low Crosstalk and High-Broadband Quantum Efficiency. IEEE Transactions on Electron Devices, 2012, 59, 2723-2726.	3.0	2
242	A 17nA, 47.2dB dynamic range, adaptive sampling controller for online data rate reduction in low power ECG systems. , 2016, , .		2
243	Review of Bio-Amplifier Architectures. Analog Circuits and Signal Processing Series, 2018, , 11-21.	0.3	2
244	Advances in Biomedical Sensor Systems for Wearable Health., 2018,, 121-143.		2
245	An Artificial Iris ASIC with High Voltage Liquid Crystal Driver, 10 nA Light Range Detector and 40 nA Blink Detector for LCD Flicker Removal. , 2020, , .		2
246	Short-Term Exercise Progression of Cardiovascular Patients throughout Cardiac Rehabilitation: An Observational Study. Journal of Clinical Medicine, 2020, 9, 3160.	2.4	2
247	Technical aspects of cardiorespiratory estimation using subspace projections and cross entropy. Physiological Measurement, 2021, 42, 115008.	2.1	2
248	Supervised SVM Transfer Learning for Modality-Specific Artefact Detection in ECG. Sensors, 2021, 21, 662.	3.8	2
249	Flight Qualification and Circuit Development of Sensor Front-End Electronics for PACS/Hershel at Liquid Helium Temperature. Journal of Microelectronics and Electronic Packaging, 2007, 4, 130-135.	0.7	2
250	Introduction to Biopotential Acquisition. Analog Circuits and Signal Processing Series, 2009, , 5-19.	0.3	2
251	Adaptive Sampling for Ultra-Low-Power Electrocardiogram (ECG) Readouts. Analog Circuits and Signal Processing Series, 2019, , 11-31.	0.3	2
252	Characterizing and Modeling Smoking Behavior Using Automatic Smoking Event Detection and Mobile Surveys in Naturalistic Environments: Observational Study. JMIR MHealth and UHealth, 2022, 10, e28159.	3.7	2

#	Article	IF	Citations
253	Alumina Porous Membranes Obtained by One-Step Anodizing Process in H2SO4 for MEMS Packaging. ECS Transactions, 2006, 3, 75-83.	0.5	1
254	TD: Proximity Data and Power Transmission. , 2007, , .		1
255	Wireless Vestibular Evoked Myogenic Potentials System. IEEE Sensors Journal, 2008, 8, 1941-1947.	4.7	1
256	A 0.5mW high dynamic range fast CMOS charge preamplifier. , 2010, , .		1
257	Built-in Self-Limitation of Masked Aluminum Anodization using Photoresist. Procedia Engineering, 2011, 25, 1633-1636.	1.2	1
258	Contact Resistivity of Laser Annealed SiGe for MEMS Structural Layers Deposited at 210°C. Materials Research Society Symposia Proceedings, 2011, 1299, 1.	0.1	1
259	Novel miniaturized packaging for implantable electronic devices. , 2012, , .		1
260	A 155& $\#$ x00B5; $\#$ 88-dB DR discrete-time & $\#$ x0394; $\#$ amp; $\#$ x03A3; modulator for digital hearing aid applications. , 2012, , .		1
261	Introduction to Compressive Sampling (CS). Analog Circuits and Signal Processing Series, 2019, , 33-53.	0.3	1
262	Spectral Shift Correction for Fabry-Perot Based Spectral Cameras. , 2019, , .		1
263	A 5-Channel Unipolar Fetal-ECG Readout IC for Patch-Based Fetal Monitoring. , 2019, , .		1
264	Performance and limitation estimation of a three-tap gated imaging sensor in wide field time-gated fluorescence lifetime imaging systems. Applied Optics, 2021, 60, 7446.	1.8	1
265	Wireless Biopotential Acquisition Systems. Analog Circuits and Signal Processing Series, 2009, , 135-145.	0.3	1
266	Accelerometer-based Sleep/Wake Detection in an Ambulatory Environment., 2019,,.		1
267	Exit pupil localization to correct spectral shift in thin-film Fabry-Perot spectral cameras. OSA Continuum, 2019, 2, 2217.	1.8	1
268	P64 Carotid Artery Tracking with Automated Wall Position Resets Yields Robust Distension Waveforms in Long-term Ultrasonic Recordings. Artery Research, 2019, 25, S106-S107.	0.6	1
269	Structural And Compositional Characterization Of Semiconductor Multilayers By Modulation Spectroscopies Proceedings of SPIE, 1989, , .	0.8	0
270	Exciton dynamics in GaAs/AlGaAs multiple quantum wells investigated by picosecond reflectivity and luminescence measurements. Journal of Luminescence, 1992, 53, 431-434.	3.1	0

#	Article	IF	CITATIONS
271	High-density hybrid interconnect technologies. , 2004, , .		0
272	TD: Electronics for Life Sciences. , 2008, , .		0
273	Shaping interconnect technology for an interconnected society. , 2010, , .		0
274	Design of widely tunable Mexican hat wavelet filter for cardiac signal analysis. , $2011, \ldots$		0
275	Bioelectronics for sustainable healthcare. , 2012, , .		0
276	Addressing the Healthcare Cost Dilemma by Managing Health instead of Managing Illness - An Opportunity for Wearable Wireless Sensors. , 2013, , .		0
277	Power Management for Vibrational Energy Harvesters. Advances in Science and Technology, 2014, 96, 108-116.	0.2	0
278	Silicon for prevention, cure and care: A technology toolbox of wearables at the dawn of a new health system. , 2015 , , .		0
279	Co-design of a MEMS-CMOS autonomous switched oscillator. , 2015, , .		O
280	A Monte Carlo simulator for noise analysis of avalanche photodiode pixels in low-light image sensing. Proceedings of SPIE, $2016, \ldots$	0.8	0
281	An Ultra-Low-Power Electrostatic Energy Harvester Interface. , 2017, , 343-352.		0
282	The Double Layer Methodology and the Validation of Eigenbehavior Techniques Applied to Lifestyle Modeling. BioMed Research International, 2017, 2017, 1-15.	1.9	0
283	A Digital Active Electrode System. Analog Circuits and Signal Processing Series, 2018, , 93-114.	0.3	0
284	An Eight-Channel Active Electrode System. Analog Circuits and Signal Processing Series, 2018, , 49-68.	0.3	0
285	Current Noise of Chopper Amplifiers. Analog Circuits and Signal Processing Series, 2018, , 69-92.	0.3	0
286	An Active Electrode Readout Circuit. Analog Circuits and Signal Processing Series, 2018, , 23-47.	0.3	0
287	Time-Based Biomedical Readout in Ultra-Low-Voltage, Small-Scale CMOS Technology. , 2018, , 311-333.		0
288	Challenges and Opportunities in Wearable Biomedical Interfaces. Analog Circuits and Signal Processing Series, $2019, 1.9$.	0.3	0

#	Article	IF	CITATIONS
289	Investigation of Heart Rate Changes before and during/after Smoking Events in Free Living Conditions. , $2019, \ldots$		0
290	Compressed Domain Feature Extraction. Analog Circuits and Signal Processing Series, 2019, , 55-67.	0.3	0
291	A Low-Power Compressive Sampling (CS) Photoplethysmogram (PPG) Readout with Embedded Feature Extraction. Analog Circuits and Signal Processing Series, 2019, , 69-94.	0.3	0
292	Reveal Temporal Patterns of Smoking Behavior in Real Life Using Data Acquired through Automatic Tracking Systems., 2020, 2020, 6005-6008.		0
293	F3: Silicon Technologies in the Fight Against Pandemics - From Point of Care to Computational Epidemiology., 2021,,.		0
294	Session 28 Overview: Biomedical Systems. , 2021, , .		0
295	Biopotential Readout Front-End ASICs. Analog Circuits and Signal Processing Series, 2009, , 39-78.	0.3	0
296	A Complete Biopotential Acquisition ASIC. Analog Circuits and Signal Processing Series, 2009, , 79-134.	0.3	0
297	24-Channel EEG Readout Front-End ASIC. Analog Circuits and Signal Processing Series, 2009, , 21-37.	0.3	0
298	Electron transport response de-embedding for high-speed image sensors. , 2019, , .		0