
Rebecca Page

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4619387/publications.pdf Version: 2024-02-01

REBECCA PACE

#	Article	IF	CITATIONS
1	The catalytic activity of TCPTP is auto-regulated by its intrinsically disordered tail and activated by Integrin alpha-1. Nature Communications, 2022, 13, 94.	12.8	16
2	Degradation of the E.Âcoli antitoxin MqsA by the proteolytic complex ClpXP is regulated by zinc occupancy and oxidation. Journal of Biological Chemistry, 2022, 298, 101557.	3.4	5
3	Oxidative stress promotes fibrosis in systemic sclerosis through stabilization of a kinase-phosphatase complex. JCI Insight, 2022, 7, .	5.0	3
4	The interaction of p38 with its upstream kinase MKK6. Protein Science, 2021, 30, 908-913.	7.6	7
5	NMR Based SARS-CoV-2 Antibody Screening. Journal of the American Chemical Society, 2021, 143, 7930-7934.	13.7	10
6	1H, 15N and 13C sequence specific backbone assignment of the MAP kinase binding domain of the dual specificity phosphatase 1 and its interaction with the MAPK p38. Biomolecular NMR Assignments, 2021, 15, 243-248.	0.8	0
7	PP2A/B55α substrate recruitment as defined by the retinoblastoma-related protein p107. ELife, 2021, 10, .	6.0	19
8	Cooperative dynamics across distinct structural elements regulate PTP1B activity. Journal of Biological Chemistry, 2020, 295, 13829-13837.	3.4	16
9	The structure of the RCAN1:CN complex explains the inhibition of and substrate recruitment by calcineurin. Science Advances, 2020, 6, .	10.3	15
10	The mode of action of the Protein tyrosine phosphatase 1B inhibitor Ertiprotafib. PLoS ONE, 2020, 15, e0240044.	2.5	15
11	A dynamic charge-charge interaction modulates PP2A:B56 substrate recruitment. ELife, 2020, 9, .	6.0	37
12	Molecular basis for the binding and selective dephosphorylation of Na+/H+ exchanger 1 by calcineurin. Nature Communications, 2019, 10, 3489.	12.8	36
13	Leveraging New Definitions of the LxVP SLiM To Discover Novel Calcineurin Regulators and Substrates. ACS Chemical Biology, 2019, 14, 2672-2682.	3.4	17
14	SDS22 selectively recognizes and traps metal-deficient inactive PP1. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 20472-20481.	7.1	28
15	Structure-Guided Exploration of SDS22 Interactions with Protein Phosphatase PP1 and the Splicing Factor BCLAF1. Structure, 2019, 27, 507-518.e5.	3.3	16
16	ASPP proteins discriminate between PP1 catalytic subunits through their SH3 domain and the PP1 C-tail. Nature Communications, 2019, 10, 771.	12.8	44
17	Preparation of Phosphorylated Proteins for NMR Spectroscopy. Methods in Enzymology, 2019, 614, 187-205.	1.0	2
18	Dynamic activation and regulation of the mitogen-activated protein kinase p38. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4655-4660.	7.1	52

REBECCA PAGE

#	Article	IF	CITATIONS
19	Structural and Regulatory Changes in PBP4 Trigger Decreased Î ² -Lactam Susceptibility in Enterococcus faecalis. MBio, 2018, 9, .	4.1	32
20	A peculiar IclR family transcription factor regulates para-hydroxybenzoate catabolism in Streptomyces coelicolor. Nucleic Acids Research, 2018, 46, 1501-1512.	14.5	9
21	1H, 15N and 13C sequence specific backbone assignment of the vanadate inhibited hematopoietic tyrosine phosphatase. Biomolecular NMR Assignments, 2018, 12, 5-9.	0.8	4
22	ldentification of the substrate recruitment mechanism of the muscle glycogen protein phosphatase 1 holoenzyme. Science Advances, 2018, 4, eaau6044.	10.3	28
23	The structure of SDS22 provides insights into the mechanism of heterodimer formation with PP1. Acta Crystallographica Section F, Structural Biology Communications, 2018, 74, 817-824.	0.8	5
24	The structures of penicillin-binding protein 4 (PBP4) and PBP5 from Enterococci provide structural insights into β-lactam resistance. Journal of Biological Chemistry, 2018, 293, 18574-18584.	3.4	41
25	A Quantitative Chemical Proteomic Strategy for Profiling Phosphoprotein Phosphatases from Yeast to Humans. Molecular and Cellular Proteomics, 2018, 17, 2448-2461.	3.8	29
26	KNL1 Binding to PP1 and Microtubules Is Mutually Exclusive. Structure, 2018, 26, 1327-1336.e4.	3.3	44
27	Structures of Dynamic Protein Complexes: Hybrid Techniques to Study MAP Kinase Complexes and the ESCRT System. Methods in Molecular Biology, 2018, 1688, 375-389.	0.9	9
28	Discovery of Protein Phosphatase 2A Substrates. FASEB Journal, 2018, 32, 795.2.	0.5	0
29	Conformational Rigidity and Protein Dynamics at Distinct Timescales Regulate PTP1B Activity and Allostery. Molecular Cell, 2017, 65, 644-658.e5.	9.7	96
30	The KIM-family protein-tyrosine phosphatases use distinct reversible oxidation intermediates: Intramolecular or intermolecular disulfide bond formation. Journal of Biological Chemistry, 2017, 292, 8786-8796.	3.4	21
31	Redox Regulation of a Gain-of-Function Mutation (N308D) in SHP2 Noonan Syndrome. ACS Omega, 2017, 2, 8313-8318.	3.5	19
32	PP1:Tautomycetin Complex Reveals a Path toward the Development of PP1-Specific Inhibitors. Journal of the American Chemical Society, 2017, 139, 17703-17706.	13.7	46
33	Molecular Insights into the Fungus-Specific Serine/Threonine Protein Phosphatase Z1 in Candida albicans. MBio, 2016, 7, .	4.1	22
34	NMR Spectroscopy to Study MAP Kinase Binding to MAP Kinase Phosphatases. Methods in Molecular Biology, 2016, 1447, 181-196.	0.9	14
35	Expanding the PP2A Interactome by Defining a B56-Specific SLiM. Structure, 2016, 24, 2174-2181.	3.3	117
36	Investigating the human Calcineurin Interaction Network using the Ï€É,LxVP SLiM. Scientific Reports, 2016, 6, 38920.	3.3	39

Rebecca Page

#	Article	IF	CITATIONS
37	Toxin-antitoxin systems in bacterial growth arrest and persistence. Nature Chemical Biology, 2016, 12, 208-214.	8.0	579
38	The Ki-67 and RepoMan mitotic phosphatases assemble via an identical, yet novel mechanism. ELife, 2016, 5, .	6.0	50
39	Structural and Functional Analysis of the GADD34:PP1 eIF2α Phosphatase. Cell Reports, 2015, 11, 1885-1891.	6.4	107
40	Strategies to make protein serine/threonine (PP1, calcineurin) and tyrosine phosphatases (PTP1B) druggable: Achieving specificity by targeting substrate and regulatory protein interaction sites. Bioorganic and Medicinal Chemistry, 2015, 23, 2781-2785.	3.0	33
41	The <scp>MqsR</scp> / <scp>MqsA</scp> toxin/antitoxin system protects <scp><i>E</i></scp> <i>scherichia coli</i> during bile acid stress. Environmental Microbiology, 2015, 17, 3168-3181.	3.8	55
42	Interaction of Kinase-Interaction-Motif Protein Tyrosine Phosphatases with the Mitogen-Activated Protein Kinase ERK2. PLoS ONE, 2014, 9, e91934.	2.5	13
43	BdcA, a Protein Important for Escherichia coli Biofilm Dispersal, Is a Short-Chain Dehydrogenase/Reductase that Binds Specifically to NADPH. PLoS ONE, 2014, 9, e105751.	2.5	18
44	Targeting the disordered C terminus of PTP1B with an allosteric inhibitor. Nature Chemical Biology, 2014, 10, 558-566.	8.0	294
45	Understanding the antagonism of retinoblastoma protein dephosphorylation by PNUTS provides insights into the PP1 regulatory code. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4097-4102.	7.1	112
46	Structural basis for protein phosphatase 1 regulation and specificity. FEBS Journal, 2013, 280, 596-611.	4.7	195
47	The Molecular Mechanism of Substrate Engagement and Immunosuppressant Inhibition of Calcineurin. PLoS Biology, 2013, 11, e1001492.	5.6	123
48	NIPP1 maintains EZH2 phosphorylation and promoter occupancy at proliferation-related target genes. Nucleic Acids Research, 2013, 41, 842-854.	14.5	42
49	The Molecular Basis for Substrate Specificity of the Nuclear NIPP1:PP1 Holoenzyme. Structure, 2012, 20, 1746-1756.	3.3	70
50	Regulation of protein phosphatase 1 by intrinsically disordered proteins. Biochemical Society Transactions, 2012, 40, 969-974.	3.4	40
51	Structural biology of MAPK (p38/ERK) regulation by phosphatases and scaffolding proteins. FASEB Journal, 2012, 26, 763.2.	0.5	0
52	Molecular Investigations of the Structure and Function of the Protein Phosphatase 1â^'Spinophilinâ~'Inhibitor 2 Heterotrimeric Complex. Biochemistry, 2011, 50, 1238-1246.	2.5	44
53	Spinophilin directs protein phosphatase 1 specificity by blocking substrate binding sites. Nature Structural and Molecular Biology, 2010, 17, 459-464.	8.2	181
54	Strategies for Improving Crystallization Success Rates. Methods in Molecular Biology, 2008, 426, 345-362.	0.9	9

#	Article	IF	CITATIONS
55	Strategies to maximize heterologous protein expression in Escherichia coli with minimal cost. Protein Expression and Purification, 2007, 51, 1-10.	1.3	190