Yann Alibert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4619277/publications.pdf Version: 2024-02-01

YANN ALIREDT

#	Article	IF	CITATIONS
1	Can we constrain the interior structure of rocky exoplanets from mass and radius measurements?. Astronomy and Astrophysics, 2015, 577, A83.	5.1	199
2	A generalized Bayesian inference method for constraining the interiors of super Earths and sub-Neptunes. Astronomy and Astrophysics, 2017, 597, A37.	5.1	121
3	Planet formation with envelope enrichment: new insights on planetary diversity. Astronomy and Astrophysics, 2016, 596, A90.	5.1	93
4	A water budget dichotomy of rocky protoplanets from 26Al-heating. Nature Astronomy, 2019, 3, 307-313.	10.1	91
5	From stellar nebula to planets: The refractory components. Astronomy and Astrophysics, 2014, 562, A27.	5.1	83
6	Elemental ratios in stars vs planets. Astronomy and Astrophysics, 2015, 580, A30.	5.1	82
7	The New Generation Planetary Population Synthesis (NGPPS). Astronomy and Astrophysics, 2021, 656, A72.	5.1	82
8	The formation of Jupiter by hybrid pebble–planetesimal accretion. Nature Astronomy, 2018, 2, 873-877.	10.1	81
9	DETERMINATION OF THE MINIMUM MASSES OF HEAVY ELEMENTS IN THE ENVELOPES OF JUPITER AND SATURN. Astrophysical Journal, 2009, 696, 1348-1354.	4.5	76
10	High precision astrometry mission for the detection and characterization of nearby habitable planetary systems with the Nearby Earth Astrometric Telescope (NEAT). Experimental Astronomy, 2012, 34, 385-413.	3.7	73
11	CLATHRATION OF VOLATILES IN THE SOLAR NEBULA AND IMPLICATIONS FOR THE ORIGIN OF TITAN'S ATMOSPHERE. Astrophysical Journal, 2009, 691, 1780-1786.	4.5	70
12	Microlensing Results Challenge the Core Accretion Runaway Growth Scenario for Gas Giants. Astrophysical Journal Letters, 2018, 869, L34.	8.3	66
13	From planetesimals to planets: volatile molecules. Astronomy and Astrophysics, 2014, 570, A36.	5.1	60
14	From stellar nebula to planetesimals. Astronomy and Astrophysics, 2014, 570, A35.	5.1	55
15	Transit detection of the long-period volatile-rich super-Earth ν22 Lupi d with CHEOPS. Nature Astronomy, 2021, 5, 775-787.	10.1	51
16	AQUA: a collection of H ₂ O equations of state for planetary models. Astronomy and Astrophysics, 2020, 643, A105.	5.1	51
17	Retrieval Analysis of the Emission Spectrum of WASP-12b: Sensitivity of Outcomes to Prior Assumptions and Implications for Formation History. Astrophysical Journal Letters, 2017, 847, L3.	8.3	49
18	Interior Characterization in Multiplanetary Systems: TRAPPIST-1. Astrophysical Journal, 2018, 865, 20.	4.5	49

YANN ALIBERT

#	Article	IF	CITATIONS
19	Maximum mass of planetary embryos that formed in core-accretion models. Astronomy and Astrophysics, 2017, 606, A69.	5.1	39
20	LAPLACE: A mission to Europa and the Jupiter System for ESA's Cosmic Vision Programme. Experimental Astronomy, 2009, 23, 849-892.	3.7	38
21	PROBING TRAPPIST-1-LIKE SYSTEMS WITH K2. Astrophysical Journal Letters, 2016, 825, L25.	8.3	31
22	Detection of Ongoing Mass Loss from HD 63433c, a Young Mini-Neptune. Astronomical Journal, 2022, 163, 68.	4.7	31
23	A pair of sub-Neptunes transiting the bright K-dwarf TOI-1064 characterized with <i>CHEOPS</i> . Monthly Notices of the Royal Astronomical Society, 2022, 511, 1043-1071.	4.4	30
24	Fundamental physics with ESPRESSO: Precise limit on variations in the fine-structure constant towards the bright quasar HE 0515â ''4414. Astronomy and Astrophysics, 2022, 658, A123.	5.1	30
25	A Maximum Radius for Habitable Planets. Origins of Life and Evolution of Biospheres, 2015, 45, 319-325.	1.9	22
26	Fundamental physics with ESPRESSO: Towards an accurate wavelength calibration for a precision test of the fine-structure constant. Astronomy and Astrophysics, 2021, 646, A144.	5.1	18
27	New metric to quantify the similarity between planetary systems: application to dimensionality reduction using T-SNE. Astronomy and Astrophysics, 2019, 624, A45.	5.1	17
28	Carbonaceous Chondrites and the Condensation of Elements from the Solar Nebula. Astrophysical Journal, 2020, 897, 82.	4.5	15
29	Constraints from deuterium on the formation of icy bodies in the Jovian system and beyond. Planetary and Space Science, 2008, 56, 1585-1595.	1.7	14
30	Planetesimal formation at the gas pressure bump following a migrating planet. Astronomy and Astrophysics, 2020, 644, A81.	5.1	12
31	The Science of Exoplanets and Their Systems. Astrobiology, 2013, 13, 793-813.	3.0	10
32	Star-planet interactions. Astronomy and Astrophysics, 2017, 602, L7.	5.1	10
33	Planetary mass–radius relations across the galaxy. Astronomy and Astrophysics, 2020, 639, A66.	5.1	9
34	Possible Chemical Composition And Interior Structure Models Of Venus Inferred From Numerical Modelling. Astrophysical Journal, 2022, 926, 217.	4.5	9
35	Radial drift and concurrent ablation of boulder-sized objects. Astronomy and Astrophysics, 2019, 629, A64.	5.1	6