Tomohiro Seki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4617981/publications.pdf

Version: 2024-02-01

93 papers 4,975 citations

94433 37 h-index 95266 68 g-index

100 all docs

100 docs citations

100 times ranked 5044 citing authors

#	Article	IF	Citations
1	Functional flexible molecular crystals: intrinsic and mechanoresponsive properties. CrystEngComm, 2021, 23, 5686-5696.	2.6	44
2	(9-Isocyanoanthracene)gold(I) Complexes Exhibiting Two Modes of Crystal Jumps by Different Structure Change Mechanisms. Inorganic Chemistry, 2021, 60, 10849-10856.	4.0	25
3	Synthesis and Optical Properties of $\langle i \rangle C \langle i \rangle, \langle i \rangle N \langle i \rangle$ -Swapped Boranils Derived from Potassium Acyltrifluoroborates. Bulletin of the Chemical Society of Japan, 2021, 94, 1547-1552.	3.2	4
4	Mechanically Deformable Molecular Crystals Based on Molecular Arrangement Changes. Nihon Kessho Gakkaishi, 2021, 63, 175-176.	0.0	0
5	Aurophilicityâ€Mediated Construction of Emissive Porous Molecular Crystals as Versatile Hosts for Liquid and Solid Guests. Chemistry - A European Journal, 2020, 26, 735-744.	3.3	19
6	Stacked nanocarbon photosensitizer for efficient blue light excited Eu(III) emission. Communications Chemistry, 2020, 3, .	4.5	19
7	Crystal Jumping of Simple Hydrocarbons: Cooling-induced Salient Effect of Bis-, Tri-, and Tetraphenylethene through Anisotropic Lattice Dimension Changes without Thermal Phase Transitions. Chemistry Letters, 2020, 49, 174-177.	1.3	10
8	Synthesis and Tunable Optical Properties of C,Nâ€Chelated Borate Luminophores Derived from Potassium Acyltrifluoroborates. Chemistry - A European Journal, 2020, 26, 2450-2455.	3.3	14
9	Thermosalience in Macrocycle-Based Soft Crystals via Anisotropic Deformation of Disilanyl Architecture. Journal of the American Chemical Society, 2020, 142, 12651-12657.	13.7	44
10	Hydrogen bond-directed supramolecular polymorphism leading to soft and hard molecular ordering. Chemical Communications, 2020, 56, 4280-4283.	4.1	28
11	Photoluminescent Ferroelastic Molecular Crystals. Angewandte Chemie, 2020, 132, 8924-8928.	2.0	16
12	Photoluminescent Ferroelastic Molecular Crystals. Angewandte Chemie - International Edition, 2020, 59, 8839-8843.	13.8	57
13	Mixed crystal formation of two gold isocyanide complexes with various ratios for continuous tuning of photophysical properties. Dalton Transactions, 2020, 49, 2073-2076.	3.3	10
14	Direct Dimesitylborylation of Benzofuran Derivatives by an Iridium atalyzed Câ^'H Activation with Silyldimesitylborane. Chemistry - A European Journal, 2019, 25, 12924-12928.	3.3	9
15	Nearâ€IR Luminescent Yb III Coordination Polymers Composed of Pyrene Derivatives for Thermostable Oxygen Sensors. Chemistry - A European Journal, 2019, 25, 12308-12315.	3.3	20
16	Anisotropic Thermal Expansion as the Source of Macroscopic and Molecular Scale Motion in Phosphorescent Amphidynamic Crystals. Angewandte Chemie - International Edition, 2019, 58, 18003-18010.	13.8	56
17	Frontispiece: Near″R Luminescent Yb ^{III} Coordination Polymers Composed of Pyrene Derivatives for Thermostable Oxygen Sensors. Chemistry - A European Journal, 2019, 25, .	3.3	0
18	Anisotropic Thermal Expansion as the Source of Macroscopic and Molecular Scale Motion in Phosphorescent Amphidynamic Crystals. Angewandte Chemie, 2019, 131, 18171-18178.	2.0	36

#	Article	IF	Citations
19	Dependence of Absorption and Emission Spectra on Polymorphs of Gold(I) Isocyanide Complexes: Theoretical Study with QM/MM Approach. Journal of Physical Chemistry C, 2019, 123, 4773-4794.	3.1	12
20	Anisotropic strain release in a thermosalient crystal: correlation between the microscopic orientation of molecular rearrangements and the macroscopic mechanical motion. Chemical Science, 2019, 10, 4185-4191.	7.4	59
21	Luminescent mechanochromism of gold <i>N</i> -heterocyclic carbene complexes with hypso- and bathochromic spectral shifts. Dalton Transactions, 2019, 48, 7105-7109.	3.3	24
22	Thermosensitive Seven-Coordinate TbIII Complexes with LLCT Transitions. European Journal of Inorganic Chemistry, 2018, 2018, 2031-2037.	2.0	10
23	Mechanical-Stimulation-Triggered and Solvent-Vapor-Induced Reverse Single-Crystal-to-Single-Crystal Phase Transitions with Alterations of the Luminescence Color. Journal of the American Chemical Society, 2018, 140, 2875-2879.	13.7	134
24	Synthesis and Photophysical Properties of Eu(III) Complexes with Phosphine Oxide Ligands including Metal Ions. Bulletin of the Chemical Society of Japan, 2018, 91, 6-11.	3.2	9
25	Origin of Concentration Quenching in Ytterbium Coordination Polymers: Phononâ€Assisted Energy Transfer. European Journal of Inorganic Chemistry, 2018, 2018, 545-545.	2.0	0
26	A Luminescent Dinuclear Eu ^{III} /Tb ^{III} Complex with LMCT Band as a Singleâ€Molecular Thermosensor. Chemistry - A European Journal, 2018, 24, 1956-1961.	3.3	38
27	A <i>meta</i> -diisocyanide benzene-based aryl gold isocyanide complex exhibiting multiple solid-state molecular arrangements and luminescent mechanochromism. Materials Chemistry Frontiers, 2018, 2, 1195-1200.	5.9	27
28	Origin of Concentration Quenching in Ytterbium Coordination Polymers: Phonon-Assisted Energy Transfer. European Journal of Inorganic Chemistry, 2018, 2018, 561-567.	2.0	10
29	Soft Crystal Force Field for Reproducing the Crystal Structures of Aryl Gold Isocyanide Complexes. Journal of Computer Chemistry Japan, 2018, 17, 155-157.	0.1	2
30	Structural Manipulation of Triboluminescent Lanthanide Coordination Polymers by Side-Group Alteration. Inorganic Chemistry, 2018, 57, 14653-14659.	4.0	22
31	Synthesis and Evaluation of a 1,3a,6aâ€Triazapentalene (TAP)â€Bonded System. Chemistry - A European Journal, 2018, 24, 17727-17733.	3.3	11
32	Light-regulated crystal growth of π-conjugated luminophores in an azobenzene matrix. Communications Chemistry, 2018, 1, .	4.5	16
33	A gold isocyanide complex with a pendant carboxy group: orthogonal molecular arrangements and hypsochromically shifted luminescent mechanochromism. Chemical Communications, 2018, 54, 11136-11139.	4.1	34
34	Spiral Eu(<scp>iii</scp>) coordination polymers with circularly polarized luminescence. Chemical Communications, 2018, 54, 10695-10697.	4.1	47
35	Spin-orbit coupling dependent energy transfer in luminescent nonanuclear Yb-Gd / Yb-Lu clusters. Journal of Luminescence, 2018, 201, 170-175.	3.1	8
36	(Invited) Luminescent Mechanochromic Gold Complex Exhibiting Phase Transition Between Crystalline Phases. ECS Meeting Abstracts, 2018 , , .	0.0	0

#	Article	IF	CITATIONS
37	Triboluminescence of Lanthanide Coordination Polymers with Faceâ€toâ€Face Arranged Substituents. Angewandte Chemie - International Edition, 2017, 56, 7171-7175.	13.8	54
38	Low-temperature-selective luminescent mechanochromism of a thienyl gold isocyanide complex. Chemical Communications, 2017, 53, 6700-6703.	4.1	27
39	Luminescent Mechanochromic 9-Anthryl Gold(I) Isocyanide Complex with an Emission Maximum at 900 nm after Mechanical Stimulation. Journal of the American Chemical Society, 2017, 139, 6514-6517.	13.7	139
40	Mechano-Responsive Luminescence via Crystal-to-Crystal Phase Transitions between Chiral and Non-Chiral Space Groups. Journal of the American Chemical Society, 2017, 139, 7452-7455.	13.7	103
41	Triboluminescence of Lanthanide Coordination Polymers with Faceâ€ŧoâ€Face Arranged Substituents. Angewandte Chemie, 2017, 129, 7277-7281.	2.0	15
42	Effective Photo―and Triboluminescent Europium(III) Coordination Polymers with Rigid Triangular Spacer Ligands. Chemistry - A European Journal, 2017, 23, 2666-2672.	3.3	26
43	Enhanced Luminescence of Asymmetrical Sevenâ€Coordinate Eu ^{III} Complexes Including LMCT Perturbation. European Journal of Inorganic Chemistry, 2017, 2017, 3843-3848.	2.0	53
44	Tris(trimethylsilyl)silylboronate Esters: Novel Bulky, Air- and Moisture-Stable Silylboronate Ester Reagents for Boryl Substitution and Silaboration Reactions. Organometallics, 2017, 36, 3019-3022.	2.3	25
45	Phosphorescence Control Mediated by Molecular Rotation and Aurophilic Interactions in Amphidynamic Crystals of 1,4-Bis[tri-(<i>p</i> j-fluorophenyl)phosphane-gold(I)-ethynyl]benzene. Journal of the American Chemical Society, 2017, 139, 18115-18121.	13.7	97
46	Tuning the Lifetime of Transient Phases of Mechanochromic Gold Isocyanide Complexes through Functionalization of the Terminal Moieties of Flexible Side Chains. Chemistry Letters, 2017, 46, 1415-1418.	1.3	15
47	Critical Role of Energy Transfer Between Terbium Ions for Suppression of Back Energy Transfer in Nonanuclear Terbium Clusters. Scientific Reports, 2016, 6, 37008.	3.3	37
48	Hyper-stable organo-EullI luminophore under high temperature for photo-industrial application. Scientific Reports, 2016, 6, 24458.	3.3	25
49	A Screening Approach for the Discovery of Mechanochromic Gold(I) Isocyanide Complexes with Crystal-to-Crystal Phase Transitions. Journal of the American Chemical Society, 2016, 138, 6252-6260.	13.7	198
50	Luminescent mechanochromism of a chiral complex: distinct crystal structures and color changes of racemic and homochiral gold(<scp>i</scp>) isocyanide complexes with a binaphthyl moiety. Chemical Communications, 2016, 52, 8083-8086.	4.1	43
51	Luminescent Europium(III) Coordination Zippers Linked with Thiopheneâ€Based Bridges. Angewandte Chemie - International Edition, 2016, 55, 12059-12062.	13.8	46
52	Introduction of a Biphenyl Moiety for a Solvent-Responsive Aryl Gold(I) Isocyanide Complex with Mechanical Reactivation. Inorganic Chemistry, 2016, 55, 12309-12320.	4.0	28
53	Direct Introduction of a Dimesitylboryl Group Using Baseâ€Mediated Substitution of Aryl Halides with Silyldimesitylborane. Chemistry - A European Journal, 2016, 22, 17547-17551.	3.3	9
54	Luminescent Europium(III) Coordination Zippers Linked with Thiophene-Based Bridges. Angewandte Chemie, 2016, 128, 12238-12241.	2.0	7

#	Article	IF	CITATIONS
55	Molecularâ€Level Understanding of Structural Changes of Organic Crystals Induced by Macroscopic Mechanical Stimulation. Chemistry - A European Journal, 2016, 22, 4322-4329.	3.3	80
56	Detailed Investigation of the Structural, Thermal, and Electronic Properties of Gold Isocyanide Complexes with Mechanoâ€Triggered Singleâ€Crystalâ€toâ€Singleâ€Crystal Phase Transitions. Chemistry - A European Journal, 2016, 22, 1968-1978.	3.3	40
57	Mechanochromic Luminescence Based on Crystal-to-Crystal Transformation Mediated by a Transient Amorphous State. Chemistry of Materials, 2016, 28, 234-241.	6.7	128
58	Mechanical path to a photogenerated structure: ball milling-induced phase transition of a gold(<scp>i</scp>) complex. CrystEngComm, 2016, 18, 7217-7220.	2.6	10
59	Sevenâ€Coordinate Luminophores: Brilliant Luminescence of Lanthanide Complexes with <i>C</i> _{3<i>V</i><fi>Complexes with Seven and Seven and Seven are supported by the seven and seven are supported by the seven are supported by the</fi>}	2.0	60
60	Photoinduced Crystalline Structure Change and Photosalient Effect through Strengthening Metallophilic Interaction. Nihon Kessho Gakkaishi, 2015, 57, 226-232.	0.0	1
61	Effective Photosensitized Energy Transfer of Nonanuclear Terbium Clusters Using Methyl Salicylate Derivatives. Journal of Physical Chemistry A, 2015, 119, 1943-1947.	2.5	24
62	Interconvertible multiple photoluminescence color of a gold(<scp>i</scp>) isocyanide complex in the solid state: solvent-induced blue-shifted and mechano-responsive red-shifted photoluminescence. Chemical Science, 2015, 6, 2187-2195.	7.4	133
63	Photoinduced single-crystal-to-single-crystal phase transition and photosalient effect of a gold(<scp>i</scp>) isocyanide complex with shortening of intermolecular aurophilic bonds. Chemical Science, 2015, 6, 1491-1497.	7.4	136
64	Mismatched changes of the photoluminescence and crystalline structure of a mechanochromic gold(<scp>i</scp>) isocyanide complex. Chemical Communications, 2015, 51, 13933-13936.	4.1	42
65	Enhanced Electric Dipole Transition in Lanthanide Complex with Organometallic Ruthenocene Units. Journal of Physical Chemistry A, 2015, 119, 4825-4833.	2.5	21
66	Luminescent Coordination Glass: Remarkable Morphological Strategy for Assembled Eu(III) Complexes. Inorganic Chemistry, 2015, 54, 4364-4370.	4.0	42
67	Ultra stable self-assembled monolayers of N-heterocyclic carbenes on gold. Nature Chemistry, 2014, 6, 409-414.	13.6	381
68	A Perylene Bisimide Organogelator for Chlorinated Solvents. Asian Journal of Organic Chemistry, 2014, 3, 128-132.	2.7	8
69	Enhancement of Optical Faraday Effect of Nonanuclear Tb(III) Complexes. Inorganic Chemistry, 2014, 53, 7635-7641.	4.0	26
70	Design amphiphilic dipolar π-systems for stimuli-responsive luminescent materials using metastable states. Nature Communications, 2014, 5, 4013.	12.8	324
71	Effect of Ligand Polarization on Asymmetric Structural Formation for Strongly Luminescent Lanthanide Complexes. European Journal of Inorganic Chemistry, 2013, 2013, 5911-5918.	2.0	42
72	Cholesterol-aided construction of distinct self-organized materials from a luminescent gold(i)–isocyanide complex exhibiting mechanochromic luminescence. Chemical Communications, 2013, 49, 11391.	4.1	48

#	Article	IF	CITATIONS
73	Alkylated-C60 based soft materials: regulation of self-assembly and optoelectronic properties by chain branching. Journal of Materials Chemistry C, 2013, 1, 1943.	5.5	61
74	Covalent Modular Approach for Dimensionâ€Controlled Selfâ€Organization of Perylene Bisimide Dyes. Chemistry - A European Journal, 2013, 19, 6561-6565.	3.3	31
75	Mechanical stimulation and solid seeding trigger single-crystal-to-single-crystal molecular domino transformations. Nature Communications, 2013, 4, 2009.	12.8	324
76	Supramolecular Engineering of Perylene Bisimide Assemblies Based on Complementary Multiple Hydrogen Bonding Interactions. Asian Journal of Organic Chemistry, 2013, 2, 708-724.	2.7	63
77	Doping Effect of CBP in Bulk-heterojunction Photovoltaic Devices Composed of P3HT and Soluble Perylene Bisimide. Molecular Crystals and Liquid Crystals, 2013, 578, 88-94.	0.9	4
78	Luminescence Colorâ€Tuning through Polymorph Doping: Preparation of a Whiteâ€Emitting Solid from a Single Gold(I)–Isocyanide Complex by Simple Precipitation. Chemistry - A European Journal, 2013, 19, 16214-16220.	3.3	33
79	Controlling Mechano†and Seedingâ€Triggered Singleâ€Crystalâ€toâ€Singleâ€Crystal Phase Transition: Molecular Domino with a Disconnection of Aurophilic Bonds. Angewandte Chemie - International Edition, 2013, 52, 12828-12832.	13.8	167
80	Luminescent Mechanochromism and Spontaneous Phase Transformation of Gold(I) Isocyanide Complexes. Bulletin of Japan Society of Coordination Chemistry, 2013, 62, 3-11.	0.2	1
81	Enantioselective catalysis with a chiral, phosphane-containing PMO material. Chemical Communications, 2012, 48, 6369.	4.1	35
82	Perylene bisimide organogels formed by melamine·cyanurate/barbiturate hydrogen-bonded tapes. Polymer Journal, 2012, 44, 600-606.	2.7	11
83	Supramolecularly Engineered Perylene Bisimide Assemblies Exhibiting Thermal Transition from Columnar to Multilamellar Structures. Journal of the American Chemical Society, 2012, 134, 7983-7994.	13.7	127
84	Solution processable hydrogen-bonded perylene bisimide assemblies organizing into lamellar architectures. Chemical Communications, 2011, 47, 12447.	4.1	29
85	Multifunctional, Polymorphic, Ionic Fullerene Supramolecular Materials: Self-Assembly and Thermotropic Properties. Langmuir, 2011, 27, 7493-7501.	3.5	27
86	Crossâ€Coupling in the Preparation of Pharmaceutically Relevant Substrates using Palladium Supported on Functionalized Mesoporous Silicas. ChemCatChem, 2011, 3, 1281-1285.	3.7	19
87	Rational Construction of Perylene Bisimide Columnar Superstructures with a Biased Helical Sense. Chemistry - A European Journal, 2011, 17, 3598-3608.	3.3	68
88	Structural and Electronic Properties of Extremely Long Perylene Bisimide Nanofibers Formed through a Stoichiometrically Mismatched, Hydrogenâ€Bonded Complexation. Small, 2010, 6, 2731-2740.	10.0	21
89	Assembly of Fullerene-Carbon Nanotubes: Temperature Indicator for Photothermal Conversion. Journal of the American Chemical Society, 2010, 132, 8566-8568.	13.7	83
90	Unconventional hydrogen-bond-directed hierarchical co-assembly between perylene bisimide and azobenzene-functionalized melamine. Organic and Biomolecular Chemistry, 2009, 7, 3926.	2.8	33

Tomohiro Seki

#	Article	IF	CITATIONS
91	Transformation from H―to Jâ€Aggregated Perylene Bisimide Dyes by Complexation with Cyanurates. Angewandte Chemie - International Edition, 2008, 47, 3367-3371.	13.8	285
92	Formation of Supramolecular Polymers and Discrete Dimers of Perylene Bisimide Dyes Based on Melamineâ^'Cyanurates Hydrogen-Bonding Interactions. Journal of Organic Chemistry, 2008, 73, 3328-3335.	3.2	74
93	Miniaturization of Nanofibers Composed of Melamine-appended Perylene Bisimides and Cyanurates. Chemistry Letters, 2008, 37, 764-765.	1.3	18