Shuji Mizumoto, æ°′ææ¬ 秀䰌

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4617498/publications.pdf

Version: 2024-02-01

95 papers 3,265 citations

30 h-index 54 g-index

98 all docs 98 docs citations

98 times ranked 3682 citing authors

#	Article	IF	CITATIONS
1	The Specific Role of Dermatan Sulfate as an Instructive Glycosaminoglycan in Tissue Development. International Journal of Molecular Sciences, 2022, 23, 7485.	4.1	13
2	Systematic investigation of the skin in <i>Chst14â^'/â^'</i> mice: A model for skin fragility in musculocontractural Ehlersâ€"Danlos syndrome caused by <i>CHST14</i> variants (mcEDS- <i>CHST14</i>). Glycobiology, 2021, 31, 137-150.	2.5	15
3	Dermatan sulphate promotes neuronal differentiation in mouse and human stem cells. Journal of Biochemistry, 2021, 169, 55-64.	1.7	11
4	Hyaluronan degradation and release of a hyaluronan-aggrecan complex from perineuronal nets in the aged mouse brain. Biochimica Et Biophysica Acta - General Subjects, 2021, 1865, 129804.	2.4	15
5	Memories of Professor Kazuyuki Sugahara. Trends in Glycoscience and Glycotechnology, 2021, 33, E49-E50.	0.1	O
6	Memories of Professor Kazuyuki Sugahara. Trends in Glycoscience and Glycotechnology, 2021, 33, J49-J49.	0.1	0
7	Global mapping of glycosylation pathways in human-derived cells. Developmental Cell, 2021, 56, 1195-1209.e7.	7.0	46
8	Pathogenic variants in uridine diphosphate nucleotidase (<i>CANT1</i>) or glucuronyltransferase () Tj ETQq0 0) 0 rgBT /O	verlock 10 Tf
9	Novel Insight Into Glycosaminoglycan Biosynthesis Based on Gene Expression Profiles. Frontiers in Cell and Developmental Biology, 2021, 9, 709018.	3.7	15
10	Congenital Disorders of Deficiency in Glycosaminoglycan Biosynthesis. Frontiers in Genetics, 2021, 12, 717535.	2.3	19
11	Myopathy Associated With Dermatan Sulfate-Deficient Decorin and Myostatin in Musculocontractural Ehlers-Danlos Syndrome: A Mouse Model Investigation. Frontiers in Cell and Developmental Biology, 2021, 9, 695021.	3.7	5
12	An Overview of in vivo Functions of Chondroitin Sulfate and Dermatan Sulfate Revealed by Their Deficient Mice. Frontiers in Cell and Developmental Biology, 2021, 9, 764781.	3.7	17
13	Muscle pathophysiology in mouse models of musculocontractural Ehlers-Danlos syndrome due to CHST14 mutations (mcEDS-CHST14), generated through CRISPR/Cas9-mediated genomic editing. DMM Disease Models and Mechanisms, 2021, , .	2.4	11
14	Recent Advances in the Pathophysiology of Musculocontractural Ehlers-Danlos Syndrome. Genes, 2020, 11, 43.	2.4	24
15	CSGALNACT1â€congenital disorder of glycosylation: A mild skeletal dysplasia with advanced bone age. Human Mutation, 2020, 41, 655-667.	2.5	15
16	b3galt6 Knock-Out Zebrafish Recapitulate Î ² 3GalT6-Deficiency Disorders in Human and Reveal a Trisaccharide Proteoglycan Linkage Region. Frontiers in Cell and Developmental Biology, 2020, 8, 597857.	3.7	11
17	Pseudodiastrophic dysplasia expands the known phenotypic spectrum of defects in proteoglycan biosynthesis. Journal of Medical Genetics, 2020, 57, 454-460.	3.2	8
18	Delineation of musculocontractural Ehlers–Danlos Syndrome caused by dermatan sulfate epimerase deficiency. Molecular Genetics & Genomic Medicine, 2020, 8, e1197.	1.2	18

#	Article	IF	Citations
19	Congenital Disorders Caused by Defects in Anabolism of Glycosaminoglycans. Trends in Glycoscience and Glycotechnology, 2020, 32, J43-J49.	0.1	0
20	Congenital Disorders Caused by Defects in Catabolism of Glycosaminoglycans. Trends in Glycoscience and Glycotechnology, 2020, 32, E127-E133.	0.1	0
21	Congenital Disorders Caused by Defects in Catabolism of Glycosaminoglycans. Trends in Glycoscience and Glycotechnology, 2020, 32, J105-J110.	0.1	0
22	Congenital Disorders Caused by Defects in Anabolism of Glycosaminoglycans. Trends in Glycoscience and Glycotechnology, 2020, 32, E45-E51.	0.1	2
23	Compositional analysis of the glycosaminoglycan family in velvet antlers of Sika deer (Cervus nippon) at different growing stages. Glycoconjugate Journal, 2019, 36, 127-139.	2.7	7
24	Structural alteration of glycosaminoglycan side chains and spatial disorganization of collagen networks in the skin of patients with mcEDS-CHST14. Biochimica Et Biophysica Acta - General Subjects, 2019, 1863, 623-631.	2.4	26
25	Hyaluronidase-4 is produced by mast cells and can cleave serglycin chondroitin sulfate chains into lower molecular weight forms. Journal of Biological Chemistry, 2019, 294, 11458-11472.	3.4	14
26	Identification of novel LFNG mutations in spondylocostal dysostosis. Journal of Human Genetics, 2019, 64, 261-264.	2.3	17
27	Functional Analysis of Dermatan Sulfate and Chondroitin Sulfate. Trends in Glycoscience and Glycotechnology, 2019, 31, SE98-SE99.	0.1	0
28	Functional Analysis of Dermatan Sulfate and Chondroitin Sulfate. Trends in Glycoscience and Glycotechnology, 2019, 31, SJ98-SJ99.	0.1	0
29	Chondroitin sulfate protects vascular endothelial cells from toxicities of extracellular histones. European Journal of Pharmacology, 2018, 826, 48-55.	3.5	19
30	Vascular abnormalities in the placenta of Chst14 \hat{a} '/ \hat{a} ' fetuses: implications in the pathophysiology of perinatal lethality of the murine model and vascular lesions in human CHST14/D4ST1 deficiency. Glycobiology, 2018, 28, 80-89.	2.5	20
31	The reduction of heparan sulphate in the glomerular basement membrane does not augment urinary albumin excretion. Nephrology Dialysis Transplantation, 2018, 33, 26-33.	0.7	11
32	Screening of known disease genes in congenital scoliosis. Molecular Genetics & Enomic Medicine, 2018, 6, 966-974.	1,2	20
33	Impaired proteoglycan glycosylation, elevated TGF- \hat{l}^2 signaling, and abnormal osteoblast differentiation as the basis for bone fragility in a mouse model for gerodermia osteodysplastica. PLoS Genetics, 2018, 14, e1007242.	3.5	36
34	Defects in Biosynthesis of Glycosaminoglycans Cause Hereditary Bone, Skin, Heart, Immune, and Neurological Disorders. Trends in Glycoscience and Glycotechnology, 2018, 30, E67-E89.	0.1	4
35	Defects in Biosynthesis of Glycosaminoglycans Cause Hereditary Bone, Skin, Heart, Immune, and Neurological Disorders. Trends in Glycoscience and Glycotechnology, 2018, 30, J43-J64.	0.1	0
36	Defect in dermatan sulfate in urine of patients with Ehlers-Danlos syndrome caused by a CHST14/D4ST1 deficiency. Clinical Biochemistry, 2017, 50, 670-677.	1.9	25

#	Article	IF	CITATIONS
37	Identification of biallelic EXTL3 mutations in a novel type of spondylo-epi-metaphyseal dysplasia. Journal of Human Genetics, 2017, 62, 797-801.	2.3	35
38	Roles of two types of heparan sulfate clusters in Wnt distribution and signaling in Xenopus. Nature Communications, 2017, 8, 1973.	12.8	38
39	Chondroitin Sulfate <i>N</i> -acetylgalactosaminyltransferase-1 (CSGalNAcT-1) Deficiency Results in a Mild Skeletal Dysplasia and Joint Laxity. Human Mutation, 2017, 38, 34-38.	2.5	22
40	Pathophysiological Significance of Dermatan Sulfate Proteoglycans Revealed by Human Genetic Disorders. Pharmaceuticals, 2017, 10, 34.	3.8	25
41	Pivotal Role of Carbohydrate Sulfotransferase 15 in Fibrosis and Mucosal Healing in Mouse Colitis. PLoS ONE, 2016, 11, e0158967.	2.5	45
42	612 Orally Active siRNA Targeting Carbohydrate Sulfotransferase 15 Alleviates Colonic Mucosal Injury in Mice. Gastroenterology, 2016, 150, S125.	1.3	0
43	Functional validation of novel compound heterozygous variants in B3GAT3 resulting in severe osteopenia and fractures: expanding the disease phenotype. BMC Medical Genetics, 2016, 17, 86.	2.1	22
44	Mutations in Biosynthetic Enzymes for the Protein Linker Region of Chondroitin/Dermatan/Heparan Sulfate Cause Skeletal and Skin Dysplasias. BioMed Research International, 2015, 2015, 1-7.	1.9	25
45	Molecular interactions between chondroitin–dermatan sulfate and growth factors/receptors/matrix proteins. Current Opinion in Structural Biology, 2015, 34, 35-42.	5.7	179
46	Skeletal dysplasia in a consanguineous clan from the island of Nias/Indonesia is caused by a novel mutation in B3GAT3. Human Genetics, 2015, 134, 691-704.	3.8	27
47	Receptor protein tyrosine phosphatase beta/zeta is a functional binding partner for vascular endothelial growth factor. Molecular Cancer, 2015, 14, 19.	19.2	20
48	Human Genetic Disorders and Knockout Mice Deficient in Glycosaminoglycan. BioMed Research International, 2014, 2014, 1-24.	1.9	45
49	Sulfation patterns of exogenous chondroitin sulfate affect chondrogenic differentiation of ATDC5 cells. Journal of Orthopaedic Science, 2014, 19, 1028-1035.	1.1	21
50	Effects of sesamin on the biosynthesis of chondroitin sulfate proteoglycans in human articular chondrocytes in primary culture. Glycoconjugate Journal, 2014, 31, 221-230.	2.7	15
51	Proteoglycans and Glycosaminoglycans Improve Toughness of Biocompatible Double Network Hydrogels. Advanced Materials, 2014, 26, 436-442.	21.0	155
52	Carbohydrate (N-Acetylgalactosamine 4-O) Sulfotransferase 14 (CHST14)., 2014,, 1135-1148.		5
53	Interaction of chondroitin sulfate and dermatan sulfate from various biological sources with heparin-binding growth factors and cytokines. Glycoconjugate Journal, 2013, 30, 619-632.	2.7	74
54	Glycosaminoglycans are functional ligands for receptor for advanced glycation endâ€products in tumors. FEBS Journal, 2013, 280, 2462-2470.	4.7	57

#	Article	IF	CITATIONS
55	Loss of dermatan sulfate epimerase (DSE) function results in musculocontractural Ehlers–Danlos syndrome. Human Molecular Genetics, 2013, 22, 3761-3772.	2.9	78
56	De Novo Mutations in <i>SLC35A2</i> Encoding a UDP-Galactose Transporter Cause Early-Onset Epileptic Encephalopathy. Human Mutation, 2013, 34, 1708-1714.	2.5	85
57	Mutations in B3GALT6, which Encodes a Glycosaminoglycan Linker Region Enzyme, Cause a Spectrum of Skeletal and Connective Tissue Disorders. American Journal of Human Genetics, 2013, 92, 927-934.	6.2	112
58	Expression of $\langle i \rangle N \langle i \rangle$ -Acetylgalactosamine 4-Sulfate 6- $\langle i \rangle O \langle i \rangle$ -Sulfotransferase Involved in Chondroitin Sulfate Synthesis Is Responsible for Pulmonary Metastasis. BioMed Research International, 2013, 2013, 1-9.	1.9	27
59	Highly sulfated hexasaccharide sequences isolated from chondroitin sulfate of shark fin cartilage: Insights into the sugar sequences with bioactivities. Glycobiology, 2013, 23, 155-168.	2.5	20
60	Human Genetic Disorders Caused by Mutations in Genes Encoding Biosynthetic Enzymes for Sulfated Glycosaminoglycans*. Journal of Biological Chemistry, 2013, 288, 10953-10961.	3.4	93
61	Clinical and Radiographic Features of the Autosomal Recessive form of Brachyolmia Caused by <i>PAPSS2</i> Mutations. Human Mutation, 2013, 34, 1381-1386.	2.5	29
62	Reduction of Chondroitin 4-O-Sulfotransferase-1 Expression Causes Costello Syndrome. Trends in Glycoscience and Glycotechnology, 2013, 25, 87-89.	0.1	0
63	Receptor for Advanced Glycation End Products (RAGE) Functions as Receptor for Specific Sulfated Glycosaminoglycans, and Anti-RAGE Antibody or Sulfated Glycosaminoglycans Delivered in Vivo Inhibit Pulmonary Metastasis of Tumor Cells. Journal of Biological Chemistry, 2012, 287, 18985-18994.	3.4	93
64	Identification of Amino Acid Residues Required for the Substrate Specificity of Human and Mouse Chondroitin Sulfate Hydrolase (Conventional Hyaluronidase-4)*. Journal of Biological Chemistry, 2012, 287, 42119-42128.	3.4	29
65	Glycosaminoglycan Chain Analysis and Characterization (Glycosylation/Epimerization). Methods in Molecular Biology, 2012, 836, 99-115.	0.9	30
66	Hyaluronidases Have Strong Hydrolytic Activity toward Chondroitin 4-Sulfate Comparable to that for Hyaluronan. Biomolecules, 2012, 2, 549-563.	4.0	56
67	ISCSM2011 Chondroitin Sulfate E-type Structure at Tumor Cell Surface Is Involved in Experimental Metastasis. Advances in Experimental Medicine and Biology, 2012, 749, 33-45.	1.6	1
68	Demonstration of the hepatocyte growth factor signaling pathway in the in vitro neuritogenic activity of chondroitin sulfate from ray fish cartilage. Biochimica Et Biophysica Acta - General Subjects, 2011, 1810, 406-413.	2.4	22
69	Faulty Initiation of Proteoglycan Synthesis Causes Cardiac and Joint Defects. American Journal of Human Genetics, 2011, 89, 15-27.	6.2	108
70	A response to: Loss of dermatan-4-sulfotransferase 1 (D4ST1/CHST14) function represents the first dermatan sulfate biosynthesis defect, "dermatan sulfate-deficient Adducted Thumb-Clubfoot Syndrome― Which name is appropriate, "Adducted Thumb-Clubfoot Synd. Human Mutation, 2011, 32, 1507-1509.	2.5	21
71	Involvement of Human Natural Killer-1 (HNK-1) Sulfotransferase in the Biosynthesis of the GlcUA(3-O-sulfate)-Gal-Gal-Xyl Tetrasaccharide Found in α-Thrombomodulin from Human Urine. Journal of Biological Chemistry, 2011, 286, 33003-33011.	3.4	27
72	Heparanase-mediated Loss of Nuclear Syndecan-1 Enhances Histone Acetyltransferase (HAT) Activity to Promote Expression of Genes That Drive an Aggressive Tumor Phenotype. Journal of Biological Chemistry, 2011, 286, 30377-30383.	3.4	98

#	Article	IF	Citations
73	Dermatan sulfate epimerase 2 is the predominant isozyme in the formation of the chondroitin sulfate/dermatan sulfate hybrid structure in postnatal developing mouse brain. Glycobiology, 2011, 21, 565-574.	2.5	35
74	Disorder of Biosynthesis of Dermatan Sulfate Causes a New Type of Ehlers-Danlos Syndrome. Trends in Glycoscience and Glycotechnology, 2011, 23, 197-199.	0.1	0
75	Analysis of the structure and neuritogenic activity of chondroitin sulfate/dermatan sulfate hybrid chains from porcine fetal membranes. Glycoconjugate Journal, 2010, 27, 49-60.	2.7	15
76	Development of a mouse monoclonal antibody against the chondroitin sulfate-protein linkage region derived from shark cartilage. Glycoconjugate Journal, 2010, 27, 387-399.	2.7	1
77	Loss-of-function mutations of CHST14 in a new type of Ehlers-Danlos syndrome. Human Mutation, 2010, 31, 966-974.	2.5	137
78	Synthesis of the glycosaminoglycan–protein linkage tetraosyl peptide moieties of betaglycan, which serve as a hexosamine acceptor for enzymatic glycosyl transfer. Carbohydrate Research, 2010, 345, 2115-2123.	2.3	22
79	Identification of human hyaluronidase-4 as a novel chondroitin sulfate hydrolase that preferentially cleaves the galactosaminidic linkage in the trisulfated tetrasaccharide sequence. Glycobiology, 2010, 20, 300-309.	2.5	91
80	Roles of Dermatan Sulfate Epimerase of Notch Receptors. Trends in Glycoscience and Glycotechnology, 2010, 22, 256-258.	0.1	0
81	Chondroitin 4- <i>O</i> -sulfotransferase-1 is required for somitic muscle development and motor axon guidance in zebrafish. Biochemical Journal, 2009, 419, 387-399.	3.7	25
82	Omaniâ€type spondyloepiphyseal dysplasia with cardiac involvement caused by a missense mutation in <i>CHST3</i> . Clinical Genetics, 2009, 75, 375-383.	2.0	54
83	Isolation and characterization of a novel chondroitin sulfate from squid liver integument rich in N-acetylgalactosamine(4,6-disulfate) and glucuronate(3-sulfate) residues. Carbohydrate Research, 2009, 344, 1526-1532.	2.3	23
84	Important role of heparan sulfate in postnatal islet growth and insulin secretion. Biochemical and Biophysical Research Communications, 2009, 383, 113-118.	2.1	77
85	Chondroitin Hydrolase in Caenorhabditis elegans. Trends in Glycoscience and Glycotechnology, 2009, 21, 149-162.	0.1	7
86	Spondyloepiphyseal dysplasia, Omani type: Further definition of the phenotype. American Journal of Medical Genetics, Part A, 2008, 146A, 2376-2384.	1.2	48
87	Recent Advances in the Structural Study of Functional Chondroitin Sulfate and Dermatan Sulfate in Health and Disease. Connective Tissue Research, 2008, 49, 133-139.	2.3	146
88	Identification of a Novel Chondroitin Hydrolase in Caenorhabditis elegans. Journal of Biological Chemistry, 2008, 283, 14971-14979.	3.4	29
89	Involvement of Highly Sulfated Chondroitin Sulfate in the Metastasis of the Lewis Lung Carcinoma Cells. Journal of Biological Chemistry, 2008, 283, 34294-34304.	3.4	93
90	Occurrence of a nonsulfated chondroitin proteoglycan in the dried saliva of Collocalia swiftlets (edible bird's-nest). Glycobiology, 2007, 17, 157-164.	2.5	31

#	Article	IF	Citations
91	Functions of Chondroitin Sulfate/Dermatan Sulfate Chains in Brain Development. Journal of Biological Chemistry, 2007, 282, 19442-19452.	3.4	75
92	Chondroitin Sulfate/Dermatan Sulfate Hybrid Chains in the Development of Cerebellum. Journal of Biological Chemistry, 2006, 281, 18942-18952.	3.4	53
93	Biosynthetic Pathways for Differential Expression of Functional Chondroitin Sulfate and Heparan Sulfate., 2005,, 289-324.		1
94	Specificities of Three Distinct Human Chondroitin/Dermatan N-Acetylgalactosamine 4-O-Sulfotransferases Demonstrated Using Partially Desulfated Dermatan Sulfate as an Acceptor. Journal of Biological Chemistry, 2003, 278, 36115-36127.	3.4	114
95	2.6 Bone and skin disorders caused by a disturbance in the biosynthesis of chondroitin sulfate and dermatan sulfate. , 0, , .		1