Robert N Harris

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4617493/publications.pdf

Version: 2024-02-01

567281 454955 35 993 15 30 citations h-index g-index papers 35 35 35 1208 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A new database structure for the IHFC Global Heat Flow Database. International Journal of Terrestrial Heat Flow and Applications, 2021, 4, $1-14$.	0.3	14
2	Spectral Analysis of Vertical Temperature Profile Timeâ€Series Data in Yellowstone Lake Sediments. Water Resources Research, 2021, 57, e2020WR028430.	4.2	6
3	Heat Flux From a Vaporâ€Dominated Hydrothermal Field Beneath Yellowstone Lake. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB021098.	3.4	7
4	Transport of Heat by Hydrothermal Circulation in a Young Rift Setting: Observations From the Auka and JaichMaa Ja'ag' Vent Field in the Pescadero Basin, Southern Gulf of California. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB022300.	3.4	4
5	Evolution of heat flow, hydrothermal circulation and permeability on the young southern flank of the Costa Rica Rift. Geophysical Journal International, 2020, 220, 278-295.	2.4	4
6	Heat Flow Evidence for Hydrothermal Circulation in Oceanic Crust Offshore Grays Harbor, Washington. Geochemistry, Geophysics, Geosystems, 2020, 21, e2019GC008879.	2.5	7
7	Heat Flow on the U.S. Beaufort Margin, Arctic Ocean: Implications for Ocean Warming, Methane Hydrate Stability, and Regional Tectonics. Geochemistry, Geophysics, Geosystems, 2020, 21, e2020GC008933.	2.5	4
8	Observations and Modeling of a Hydrothermal Plume in Yellowstone Lake. Geophysical Research Letters, 2019, 46, 6435-6442.	4.0	15
9	Diagenetic, metamorphic, and hydrogeologic consequences of hydrothermal circulation in subducting crust., 2018, 14, 2337-2354.		8
10	Analysis of a conductive heat flow profile in the Ecuador Fracture Zone. Earth and Planetary Science Letters, 2017, 467, 120-127.	4.4	10
11	Systematic heat flow measurements across the Wagner Basin, northern Gulf of California. Earth and Planetary Science Letters, 2017, 479, 340-353.	4.4	16
12	Heat flow bounds over the <scp>C</scp> ascadia margin derived from bottom simulating reflectors and implications for thermal models of subduction. Geochemistry, Geophysics, Geosystems, 2017, 18, 3309-3326.	2.5	26
13	Links between clay transformation and earthquakes along the Costa Rican subduction margin. Geophysical Research Letters, 2017, 44, 7725-7732.	4.0	9
14	Thermal environment of the Southern Washington region of the Cascadia subduction zone. Journal of Geophysical Research: Solid Earth, 2017, 122, 5852-5870.	3.4	14
15	Hydrothermal circulation and the thermal structure of shallow subduction zones. , 2017, 13, 1425-1444.		17
16	Heat flow along the Costa Rica Seismogenesis Project drilling transect: Implications for hydrothermal and seismic processes. Geochemistry, Geophysics, Geosystems, 2016, 17, 2110-2127.	2.5	10
17	Hydrogeological responses to incoming materials at the erosional subduction margin, offshore <scp>O</scp> sa <scp>P</scp> eninsula, <scp>C</scp> osta <scp>R</scp> ica. Geochemistry, Geophysics, Geosystems, 2015, 16, 2725-2742.	2.5	11
18	Dissociation of Cascadia margin gas hydrates in response to contemporary ocean warming. Geophysical Research Letters, 2014, 41, 8486-8494.	4.0	34

#	Article	IF	Citations
19	The thermal structure of the subduction thrust within accretionary and erosive margins. Tectonophysics, 2014, 633, 221-231.	2.2	6
20	Heat Flow and Fluid Flux in Cascadia's Seismogenic Zone. Eos, 2013, 94, 457-458.	0.1	6
21	Heat flow in vapor dominated areas of the Yellowstone Plateau Volcanic Field: Implications for the thermal budget of the Yellowstone Caldera. Journal of Geophysical Research, 2012, 117, .	3.3	53
22	Heat flow along the NanTroSEIZE transect: Results from IODP Expeditions 315 and 316 offshore the Kii Peninsula, Japan. Geochemistry, Geophysics, Geosystems, 2011, 12, n/a-n/a.	2.5	38
23	Thermal regime of the Costa Rican convergent margin: 1. Alongâ€strike variations in heat flow from probe measurements and estimated from bottomâ€simulating reflectors. Geochemistry, Geophysics, Geosystems, 2010, 11, .	2.5	31
24	Thermal regime of the Costa Rican convergent margin: 2. Thermal models of the shallow Middle America subduction zone offshore Costa Rica. Geochemistry, Geophysics, Geosystems, 2010, 11 , .	2.5	63
25	Snow effect on North American ground temperatures, 1950–2002. Journal of Geophysical Research, 2005, 110, .	3.3	48
26	Borehole temperatures and tree rings: Seasonality and estimates of extratropical Northern Hemispheric warming. Journal of Geophysical Research, 2005, 110, n/a-n/a.	3.3	18
27	Comment on "Ground vs. surface air temperature trends: Implications for borehole surface temperature reconstructions―by M. E. Mann and G. Schmidt. Geophysical Research Letters, 2004, 31, n/a-n/a.	4.0	61
28	Re-evaluation of heat flow data near Parkfield, CA: Evidence for a weak San Andreas Fault. Geophysical Research Letters, 2004, 31, .	4.0	44
29	Snow and the ground temperature record of climate change. Journal of Geophysical Research, 2004, 109, .	3.3	86
30	Climate change in India inferred from geothermal observations. Journal of Geophysical Research, 2002, 107, ETG 5-1-ETG 5-16.	3.3	44
31	Thermal models of the Middle America Trench at the Nicoya Peninsula, Costa Rica. Geophysical Research Letters, 2002, 29, 6-1.	4.0	109
32	Reply to Comment by T.J. Osborn and K.R. Briffa on "Mid-latitude (30°-60°N) climatic warming inferred by combining borehole temperatures with surface air temperatures". Geophysical Research Letters, 2002, 29, 46-1-46-1.	4.0	2
33	Mid-latitude ($30\text{\^{A}}^\circ$ - $60\text{\^{A}}^\circ$ N) climatic warming inferred by combining borehole temperatures with surface air temperatures. Geophysical Research Letters, 2001, 28, 747-750.	4.0	126
34	Repeat temperature measurements in Borehole GCâ€1, northwestern Utah: Towards isolating a climateâ€change signal in borehole temperature profiles. Geophysical Research Letters, 1993, 20, 1891-1894.	4.0	35
35	Thermal Regime of the Northern Hikurangi Margin, New Zealand. Geophysical Journal International, 0,	2.4	7

3