
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/461723/publications.pdf Version: 2024-02-01

ΔΗΠΝ ΠΗΔΝ

#	Article	IF	CITATIONS
1	The catalysts of three-dimensionally ordered macroporous Ce1â^'xZrxO2-supported gold nanoparticles for soot combustion: The metal–support interaction. Journal of Catalysis, 2012, 287, 13-29.	6.2	215
2	Selective catalytic reduction of NO with NH3 over HZSM-5-supported Fe–Cu nanocomposite catalysts: The Fe–Cu bimetallic effect. Applied Catalysis B: Environmental, 2014, 148-149, 520-531.	20.2	210
3	Synthesis of NiMo catalysts supported on mesoporous Al-SBA-15 with different morphologies and their catalytic performance of DBT HDS. Applied Catalysis B: Environmental, 2015, 165, 269-284.	20.2	129
4	Synthesis, characterization, and catalytic performance of NiMo catalysts supported on hierarchically porous Beta-KIT-6 material in the hydrodesulfurization of dibenzothiophene. Journal of Catalysis, 2010, 274, 273-286.	6.2	125
5	Synthesis of NiMo hydrodesulfurization catalyst supported on a composite of nano-sized ZSM-5 zeolite enwrapped with mesoporous KIT-6 material and its high isomerization selectivity. Journal of Catalysis, 2014, 317, 303-317.	6.2	114
6	Synthesis of NiMo catalysts supported on mesoporous Al2O3 with different crystal forms and superior catalytic performance for the hydrodesulfurization of dibenzothiophene and 4,6-dimethyldibenzothiophene. Journal of Catalysis, 2016, 344, 680-691.	6.2	111
7	Size effect of TS-1 supports on the catalytic performance of PtSn/TS-1 catalysts for propane dehydrogenation. Journal of Catalysis, 2017, 352, 361-370.	6.2	89
8	Synthesis of hierarchically porous L-KIT-6 silica–alumina material and the super catalytic performances for hydrodesulfurization of benzothiophene. Applied Catalysis B: Environmental, 2015, 165, 763-773.	20.2	83
9	Al-modified dendritic mesoporous silica nanospheres-supported NiMo catalysts for the hydrodesulfurization of dibenzothiophene: Efficient accessibility of active sites and suitable metal–support interaction. Journal of Catalysis, 2017, 356, 269-282.	6.2	81
10	A simple two-step method to synthesize the well-ordered mesoporous composite Ti-FDU-12 and its application in the hydrodesulfurization of DBT and 4,6-DMDBT. Journal of Materials Chemistry A, 2014, 2, 19738-19749.	10.3	77
11	Preparation of NiMo/KIT-6 hydrodesulfurization catalysts with tunable sulfidation and dispersion degrees of active phase by addition of citric acid as chelating agent. Fuel, 2014, 130, 203-210.	6.4	72
12	Preparation, characterization and hydrotreating performances of ZrO2–Al2O3-supported NiMo catalysts. Catalysis Today, 2010, 149, 62-68.	4.4	65
13	Self-Assembly of Hierarchically Porous ZSM-5/SBA-16 with Different Morphologies and Its High Isomerization Performance for Hydrodesulfurization of Dibenzothiophene and 4,6-Dimethyldibenzothiophene. ACS Catalysis, 2018, 8, 1891-1902.	11.2	61
14	Characterization and activity of Mo supported catalysts for diesel deep hydrodesulphurization. Catalysis Today, 2007, 119, 13-18.	4.4	59
15	Influence of sulfur vacancy on thiophene hydrodesulfurization mechanism at different MoS 2 edges: A DFT study. Chemical Engineering Science, 2017, 164, 292-306.	3.8	59
16	Self-assembly of monodispersed hierarchically porous Beta-SBA-15 with different morphologies and its hydro-upgrading performances for FCC gasoline. Journal of Materials Chemistry A, 2015, 3, 16501-16512.	10.3	57
17	Potassium-modified molybdenum-containing SBA-15 catalysts for highly efficient production of acetaldehyde and ethylene by the selective oxidation of ethane. Journal of Catalysis, 2012, 285, 134-144.	6.2	52
18	Morphology-selective synthesis of active and durable gold catalysts with high catalytic performance in the reduction of 4-nitrophenol. Nano Research, 2016, 9, 3099-3115.	10.4	52

#	Article	IF	CITATIONS
19	Ti-modified alumina supports prepared by sol–gel method used for deep HDS catalysts. Catalysis Today, 2008, 131, 314-321.	4.4	51
20	Synthesis of hierarchically porous silicas with mesophase transformations in a four-component microemulsion-type system and the catalytic performance for dibenzothiophene hydrodesulfurization. Journal of Materials Chemistry A, 2014, 2, 6823-6833.	10.3	50
21	Hydrodesulphurization performance of NiW/TiO2-Al2O3 catalyst for ultra clean diesel. Catalysis Today, 2009, 140, 187-191.	4.4	48
22	Synthesis of ordered hierarchically porous L-SBA-15 material and its hydro-upgrading performance for FCC gasoline. Fuel, 2014, 117, 974-980.	6.4	45
23	DFT insights into the formation of sulfur vacancies over corner/edge site of Co/Ni-promoted MoS2 and WS2 under the hydrodesulfurization conditions. Applied Catalysis B: Environmental, 2019, 257, 117937.	20.2	44
24	Effect of synthesis temperature on structure-activity-relationship over NiMo/γ-Al2O3 catalysts for the hydrodesulfurization of DBT and 4,6-DMDBT. Fuel Processing Technology, 2017, 161, 52-61.	7.2	42
25	Synthesis, characterization and catalytic performance of meso-microporous material Beta-SBA-15-supported NiMo catalysts for hydrodesulfurization of dibenzothiophene. Catalysis Today, 2011, 175, 477-484.	4.4	40
26	Dendritic micro–mesoporous composites with center-radial pores assembled by TS-1 nanocrystals to enhance hydrodesulfurization activity of dibenzothiophene and 4,6-dimethyldibenzothiophene. Journal of Catalysis, 2020, 384, 136-146.	6.2	40
27	Synthesis of mesoporous materials SBA-16 with different morphologies and their application in dibenzothiophene hydrodesulfurization. Chemical Engineering Science, 2016, 155, 141-152.	3.8	38
28	Selective hydrocracking of light cycle oil into high-octane gasoline over bi-functional catalysts. Journal of Energy Chemistry, 2021, 52, 41-50.	12.9	38
29	Synthesis of CoMo catalysts supported on EMT/FAU intergrowth zeolites with different morphologies and their hydro-upgrading performances for FCC gasoline. Chemical Engineering Journal, 2015, 270, 176-186.	12.7	35
30	Hydrodesulfurization of Fluidized Catalytic Cracking Diesel Oil over NiW/AMB Catalysts Containing H-Type β-Zeolite in Situ Synthesized from Kaolin Material. Energy & Fuels, 2009, 23, 3846-3852.	5.1	33
31	Optimal synthesis of micro/mesoporous beta zeolite from kaolin clay and catalytic performance for hydrodesulfurization of diesel. Catalysis Today, 2011, 175, 485-493.	4.4	32
32	Synthesis of micro-mesoporous materials ZSM-5/FDU-12 and the performance of dibenzothiophene hydrodesulfurization. RSC Advances, 2017, 7, 28038-28047.	3.6	32
33	Structural Screening and Design of Dendritic Micro–Mesoporous Composites for Efficient Hydrodesulfurization of Dibenzothiophene and 4,6-Dimethyldibenzothiophene. ACS Applied Materials & Interfaces, 2020, 12, 40404-40414.	8.0	32
34	Synthesis of a novel micro/mesoporous composite material Beta-FDU-12 and its hydro-upgrading performance for FCC gasoline. RSC Advances, 2016, 6, 1018-1026.	3.6	29
35	The influence of hydrothermal crystallization temperature on a novel FDU-12 mesoporous composite assembled by ZSM-5 nanoclusters and its hydrodesulfurization performance for DBT and FCC diesel. Fuel Processing Technology, 2018, 180, 56-66.	7.2	29
36	Ultrafine PtRu nanoparticles confined in hierarchically porous carbon derived from micro-mesoporous zeolite for enhanced nitroarenes reduction performance. Journal of Catalysis, 2019, 370, 385-403.	6.2	28

#	Article	IF	CITATIONS
37	DFT insights into the direct desulfurization pathways of DBT and 4,6-DMDBT catalyzed by Co-promoted and Ni-promoted MoS2 corner sites. Chemical Engineering Science, 2019, 206, 249-260.	3.8	28
38	Synergistic effect of acidity and active phases for NiMo catalysts on dibenzothiophene hydrodesulfurization performance. Chemical Engineering Journal, 2020, 400, 125886.	12.7	28
39	Hydro-upgrading Performance of Fluid Catalytic Cracking Diesel over Different Crystal Forms of Alumina-Supported CoMo Catalysts. Energy & Fuels, 2017, 31, 7456-7463.	5.1	26
40	Synthesis of NiMo catalysts supported on mesoporous silica FDU-12 with different morphologies and their catalytic performance of DBT HDS. Catalysis Today, 2017, 291, 146-152.	4.4	25
41	Synthesis and characterization of Beta-FDU-12 and the hydrodesulfurization performance of FCC gasoline and diesel. Fuel Processing Technology, 2018, 172, 55-64.	7.2	25
42	Hydrodesulfurization of dibenzothiophene and 4,6-dimethyldibenzothiophene over NiMo supported on yolk-shell silica catalysts with adjustable shell thickness and yolk size. Journal of Catalysis, 2022, 410, 128-143.	6.2	25
43	Hierarchically Porous ZSM-5/SBA-15 Zeolite: Tuning Pore Structure and Acidity for Enhanced Hydro-Upgrading of FCC Gasoline. Industrial & Engineering Chemistry Research, 2018, 57, 14031-14043.	3.7	24
44	Synthesis of novel hierarchically porous NiMo/ZSM-5-KIT-5 catalysts and their superior performance in hydrodenitrogenation of quinoline. Catalysis Science and Technology, 2018, 8, 5062-5072.	4.1	24
45	High-dispersed Ni-Mo-S active phases within hierarchical pore materials by introducing the cationic protective shell during the impregnation process for hydrodesulfurization. Fuel, 2020, 263, 116701.	6.4	24
46	Zeolite beta synthesized with acid-treated metakaolin and its application in diesel hydrodesulfurization. Catalysis Today, 2010, 149, 69-75.	4.4	23
47	Mercaptosilane-assisted synthesis of sub-nanosized Pt particles within hierarchically porous ZSM-5/SBA-15 materials and their enhanced hydrogenation properties. Nanoscale, 2015, 7, 10918-10924.	5.6	23
48	Effect of promoters on the HDS activity of alumina-supported Co–Mo sulfide catalysts. RSC Advances, 2015, 5, 99706-99711.	3.6	23
49	Synthesis of a novel zeolite W and application in the catalyst for FCC gasoline hydro-upgrading. Catalysis Today, 2015, 245, 163-171.	4.4	23
50	Synthesis of mesoporous silica material with ultra-large pore sizes and the HDS performance of dibenzothiophene. Microporous and Mesoporous Materials, 2016, 226, 510-521.	4.4	23
51	Synthesis of Zirconium Modified Spherical Mesostructured Cellular Silica Foams and Its Hydrodesulfurization Performance for FCC Diesel. Energy & Fuels, 2017, 31, 5448-5460.	5.1	22
52	Restrictive Diffusion in the Hydrodesulfurization over Ni-MoS ₂ /Al ₂ O ₃ with Different Crystal Forms. Industrial & Engineering Chemistry Research, 2017, 56, 10018-10027.	3.7	21
53	Synthesis and catalytic performance of novel hierachically porous material beta-MCM-48 for diesel hydrodesulfurization. Journal of Porous Materials, 2013, 20, 1195-1204.	2.6	20
54	Ni ₂ P promotes the hydrogenation activity of naphthalene on wrinkled silica nanoparticles with tunable hierarchical pore sizes in a large range. Nanoscale, 2019, 11, 15519-15529.	5.6	20

#	Article	IF	CITATIONS
55	Insights into the intrinsic kinetics for efficient hydrodesulfurization of 4,6-dimethyldibenzothiophene over mesoporous CoMoS2/ZSM-5. Journal of Catalysis, 2022, 408, 279-293.	6.2	20
56	Controllable Synthesis of Spherical Al-SBA-16 Mesoporous Materials with Different Crystal Sizes and Its High Isomerization Performance for Hydrodesulfurization of Dibenzothiophene and 4,6-Dimethyldibenzothiophene. Industrial & Engineering Chemistry Research, 2018, 57, 2498-2507.	3.7	19
57	Hydrotreating Performance of FCC Diesel and Dibenzothiophene over NiMo Supported Zirconium Modified Al-TUD-1 Catalysts. Industrial & Engineering Chemistry Research, 2018, 57, 11868-11882.	3.7	18
58	Optimal Synthesis of Hierarchical Porous Composite ZSM-5/SBA-16 for Ultradeep Hydrodesulfurization of Dibenzothiophene and 4,6-Dimethyldibenzothiophene. Part 2: The Influence of Aging Temperature on the Properties of NiMo Catalysts. Energy & Fuels, 2018, 32, 7800-7809.	5.1	18
59	Trimetallic Catalyst Supported Zirconium-Modified Three-Dimensional Mesoporous Silica Material and Its Hydrodesulfurization Performance of Dibenzothiophene and 4,6-Dimethydibenzothiophene. Industrial & Engineering Chemistry Research, 2020, 59, 654-667.	3.7	18
60	Tailoring NiMoS active phases with high hydrodesulfurization activity through facilely synthesized supports with tunable mesostructure and morphology. Journal of Catalysis, 2020, 387, 170-185.	6.2	18
61	PdCu supported on dendritic mesoporous CexZr1-xO2 as superior catalysts to boost CO2 hydrogenation to methanol. Journal of Colloid and Interface Science, 2022, 611, 739-751.	9.4	18
62	Influence of Support Acidity on the HDS Performance over β-SBA-16 and Al-SBA-16 Substrates: A Combined Experimental and Theoretical Study. Energy & Fuels, 2019, 33, 1479-1488.	5.1	17
63	Synthesis of Titanium Modified Three-Dimensional KIT-5 Mesoporous Support and Its Application of the Quinoline Hydrodenitrogenation. Energy & Fuels, 2019, 33, 5518-5528.	5.1	17
64	Preparation and Evaluation of the Composite Containing USL Zeolite-Supported NiW Catalysts for Hydrotreating of FCC Diesel. Energy & Fuels, 2010, 24, 796-803.	5.1	16
65	Al-modified mesocellular silica foam as a superior catalyst support for dibenzothiophene hydrodesulfurization. Chinese Journal of Catalysis, 2017, 38, 1347-1359.	14.0	16
66	Optimal Synthesis of Hierarchical Porous Composite ZSM-5/SBA-16 for Ultradeep Hydrodesulfurization of Dibenzothiophene and 4,6-Dimethyldibenzothiophene. Part 1: The Influence of Inorganic Salt on the Properties of NiMo Catalysts. Energy & Fuels, 2018, 32, 6204-6212.	5.1	16
67	Oriented Hydrocracking of Naphthalene into High-Value Light Aromatics over Difunctional Catalysts: Effect of Hydrogen Spillover and Utilization of Hydroreaction Characteristics for Different Active Metals. ACS Catalysis, 2020, 10, 12342-12353.	11.2	16
68	Modified Dendritic Mesoporous Silica Nanospheres Composites: Superior Pore Structure and Acidity for Enhanced Hydrodesulfurization Performance of Dibenzothiophene. Energy & Fuels, 2020, 34, 8759-8768.	5.1	16
69	The Influence of Pore Structure and Acidity on the Hydrodesulfurization of Dibenzothiophene over NiMo-Supported Catalysts. ACS Omega, 2020, 5, 15576-15585.	3.5	16
70	Zirconium modified TUD-1 mesoporous catalysts for the hydrodesulfurization of FCC diesel. Applied Catalysis A: General, 2015, 502, 320-328.	4.3	15
71	The Synthesis of Al-SBA-16 Materials with a Novel Method and Their Catalytic Application on Hydrogenation for FCC Diesel. Energy & amp; Fuels, 2017, 31, 805-814.	5.1	15
72	Synthesis of ZSM-5/KIT-6 with a tunable pore structure and its catalytic application in the hydrodesulfurization of dibenzothiophene and diesel oil. RSC Advances, 2018, 8, 28879-28890.	3.6	15

#	Article	IF	CITATIONS
73	Pt-confinement catalyst with dendritic hierarchical pores on excellent sulfur-resistance for hydrodesulfurization of dibenzothiophene and 4,6-dimethyldibenzothiophene. Green Energy and Environment, 2022, 7, 324-333.	8.7	15
74	DFT insights into the hydrodesulfurization mechanisms of different sulfur-containing compounds over CoMoS active phase: Effect of the brim and CUS sites. Chemical Engineering Science, 2021, 231, 116311.	3.8	15
75	Core-shell meso-beta@mesoporous aluminosilicate supported Ni2P catalyst for the hydrodenitrogenation of quinoline: Effect of core shell structure on Ni2P particle size. Fuel, 2021, 302, 121131.	6.4	15
76	Synthesis of Alâ€Containing Spherical Mesocellular Silica Foams with Different Pore Sizes and Their Applications as Catalyst Supports for Hydrodesulfurization of Dibenzothiophene. ChemCatChem, 2015, 7, 1948-1960.	3.7	14
77	Synthesis of zirconium modified FDU-12 by different methods and its application in dibenzothiophene hydrodesulfurization. RSC Advances, 2018, 8, 27565-27573.	3.6	14
78	Facile synthesis of few-layer MoS2 nanosheets with different morphologies supported on Al-TUD-1 for efficient hydrodesulfurization of dibenzothiophene and 4,6-dimethyldibenzothiophene. Chemical Engineering Journal, 2021, 425, 131416.	12.7	14
79	NiW/AMBT catalysts for the production of ultra-low sulfur diesel. Catalysis Today, 2010, 158, 521-529.	4.4	12
80	Post Synthesis of Aluminum Modified Mesoporous TUD-1 Materials and Their Application for FCC Diesel Hydrodesulfurization Catalysts. Catalysts, 2017, 7, 141.	3.5	12
81	Hydrodesulfurization Properties of Dibenzothiophene over NiMo Catalysts Supported on Cubic <i>Fm</i> 3 <i>m</i> Mesoporous Structure and High-Framework Aluminum-Modified AlKIT-5. Energy & Fuels, 2018, 32, 9793-9803.	5.1	12
82	Hierarchically Porous β/SBA-16 Composites: Tuning Pore Structure and Acidity for Enhanced Isomerization Performance in Hydrodesulfurization of Dibenzothiophene and 4,6-Dimethyldibenzothiophene. Energy & Fuels, 2020, 34, 769-777.	5.1	12
83	Screening and design of active metals on dendritic mesoporous Ce0.3Zr0.7O2 for efficient CO2 hydrogenation to methanol. Fuel, 2022, 317, 123471.	6.4	12
84	Supported single Au(III) ion catalysts for high performance in the reactions of 1,3-dicarbonyls with alcohols. Nano Research, 2016, 9, 985-995.	10.4	11
85	The influence of zoned Al distribution of ZSM-5 zeolite on the reactivity of hexane cracking. Molecular Catalysis, 2020, 484, 110770.	2.0	11
86	Insights into the effect of solvent on dibenzothiophene hydrodesulfurization. Fuel, 2021, 287, 119459.	6.4	11
87	DFT insights into hydrogen activation on the doping Ni2P surfaces under the hydrodesulfurization condition. Applied Surface Science, 2021, 538, 148160.	6.1	11
88	DFT insights into the hydrodenitrogenation mechanism of quinoline catalyzed by different Ni-promoted MoS2 edge sites: Effect of the active phase morphology. Journal of Hazardous Materials, 2021, 411, 125127.	12.4	11
89	Synthesis of HKUST-1 and zeolite beta composites for deep desulfurization of model gasoline. RSC Advances, 2018, 8, 13750-13754.	3.6	10
90	Titanium-Modified TUD-1 Mesoporous Catalysts for the Hydrotreatment of FCC Diesel. Energy & Fuels, 2018, 32, 8210-8219.	5.1	10

#	Article	IF	CITATIONS
91	Synthesis of highly ordered Al-Zr-SBA-16 composites and their application in dibenzothiophene hydrodesulfurization. Chemical Engineering Science, 2020, 213, 115415.	3.8	10
92	Tuning physicochemical properties of hierarchically ZSM-5/FDU-12 composite material and its catalytic hydrodesulfurization performance for diesel. Catalysis Today, 2021, 374, 162-172.	4.4	10
93	Selective Hydrocracking Polyaromatics into Light Aromatics: the Separation of Hydrogenation Center and Cracking Center. ACS Sustainable Chemistry and Engineering, 2021, 9, 12415-12426.	6.7	10
94	Monodispersed dendritic mesoporous silica/carbon nanospheres with enhanced active site accessibility for selective adsorptive desulfurization. Journal of Materials Science, 2019, 54, 8148-8162.	3.7	9
95	Lanthanum/Gallium-Modified Zn/ZSM-5 Zeolite for Efficient Isomerization/Aromatization of FCC Light Gasoline. Industrial & Engineering Chemistry Research, 2022, 61, 9667-9677.	3.7	9
96	Study on Hydrodesulfurization of L/W Coexistence Zeolite Modified by Magnesium for FCC Gasoline. Energy & Fuels, 2018, 32, 777-786.	5.1	8
97	Restrictive diffusion and hydrodesulfurization reaction of <scp>dibenzothiophenes</scp> over <scp>NiMo</scp> / <scp>SBA</scp> â€15 catalysts. AICHE Journal, 2022, 68, e17577.	3.6	8
98	Catalytic performance and sulfidation behaviors of CoMo/Beta-MCM-48 catalysts prepared with citric acid for FCC gasoline hydroupgrading. Journal of Porous Materials, 2015, 22, 127-135.	2.6	7
99	Hierarchically Structured Porous Silica Spheres by Microemulsion/Vesicle Templating for Hydrodesulfurization of Fluid Catalytic Cracking Diesel. Particle and Particle Systems Characterization, 2016, 33, 190-203.	2.3	7
100	Restricted diffusion of model sulfides over a NiMo/BK catalyst under hydrodesulfurization reaction conditions. RSC Advances, 2017, 7, 44340-44347.	3.6	7
101	Effect of Inorganic Salts on Beta-FDU-12 Micro-/Mesoporous Materials with the Applications in Dibenzothiphene Hydrodesulfurization. Industrial & Engineering Chemistry Research, 2019, 58, 11831-11840.	3.7	7
102	Ultrasmall Particle Sizes of Walnutâ€Like Mesoporous Silica Nanospheres with Unique Large Pores and Tunable Acidity for Hydrogenating Reaction. Small, 2020, 16, e2002091.	10.0	7
103	Hydrocracking Straight-Run Diesel into High-Value Chemical Materials: The Effect of Acidity and Kinetic Study. Industrial & Engineering Chemistry Research, 2022, 61, 8685-8697.	3.7	7
104	Synthesis of aluminum-modified 3D mesoporous TUD-1 materials and their hydrotreating performance of FCC diesel. RSC Advances, 2015, 5, 5221-5230.	3.6	6
105	High-Performance Bimetal NiMo Catalysts Prepared over Novel Cubic Mesoporous Silica with a Cost-Efficient Method for the Removal of Dibenzothiophene. Industrial & Engineering Chemistry Research, 2019, 58, 9300-9313.	3.7	6
106	A hierarchical ZSM-22/PHTS composite material and its hydro-isomerization performance in hydro-upgrading of gasoline. Catalysis Science and Technology, 2021, 11, 5448-5459.	4.1	6
107	The effect of microwave electric field on sulfur vacancies formation over the edge sites of Co/Ni-promoted and unpromoted MoS2 catalysts through DFT investigations. Fuel, 2022, 318, 123553.	6.4	6
108	Hierarchically Ordered Micro-/Mesoporous Material Assembled by a Zeolite W Nanocrystal and Its Hydro-Upgrading Performance for FCC Gasoline. Industrial & Engineering Chemistry Research, 2020, 59, 1101-1112.	3.7	5

#	Article	IF	CITATIONS
109	Phosphoric acid modified Al-TUD-1 material to enhance hydrodesulfurization activities of dibenzothiophene and FCC diesel. Catalysis Today, 2021, 374, 154-161.	4.4	5
110	Reaction Behaviors and Crystal Transformation of Industrial Vanadium–Phosphorus–Oxygen (VPO) Catalysts for <i>n</i> -Butane Oxidation. ACS Omega, 2021, 6, 23558-23563.	3.5	5
111	Preparation of Beta-KIT-5 composite material supported ternary metal catalyst and its hydrodenitrogenation performance of quinoline. Fuel, 2022, 326, 125084.	6.4	5
112	Spherical mesocellular silica foams: a superior support for hydrodesulfurization of fluid catalytic cracking diesel. Journal of Porous Materials, 2017, 24, 941-946.	2.6	4
113	Ultrasound-assisted synthesis of ordered mesoporous silica FDU-12 with a hollow structure. New Journal of Chemistry, 2018, 42, 2381-2384.	2.8	4
114	Effect of Crystalline Phases for VPO Catalysts on the Oxidation of Butane: Thermodynamics and Kinetics. Industrial & Engineering Chemistry Research, 2021, 60, 15056-15063.	3.7	4
115	Molecular characteristics of sulfur compounds in oxidative desulfurization for heavy fuel oil based on APPI FT-ICR MS analysis. Catalysis Today, 2022, 404, 262-268.	4.4	4
116	Comparison of the intraparticle diffusion of DBT and 4,6-DMDBT in HDS over different mesostructured silica-based catalysts. Fuel, 2022, 324, 124516.	6.4	4
117	DFT insights into competitive adsorption and reaction mechanism of benzothiophene and naphthalene on Fe-doped Ni2P catalyst. Fuel, 2022, 314, 123114.	6.4	3