
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4616786/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	CRISPR-Cas systems are widespread accessory elements across bacterial and archaeal plasmids. Nucleic Acids Research, 2022, 50, 4315-4328.	14.5	44
2	High viral abundance and low diversity are associated with increased CRISPR-Cas prevalence across microbial ecosystems. Current Biology, 2022, 32, 220-227.e5.	3.9	23
3	A mobile restriction–modification system provides phage defence and resolves an epigenetic conflict with an antagonistic endonuclease. Nucleic Acids Research, 2022, 50, 3348-3361.	14.5	17
4	Type I CRISPR-Cas provides robust immunity but incomplete attenuation of phage-induced cellular stress. Nucleic Acids Research, 2022, 50, 160-174.	14.5	12
5	PADLOC: a web server for the identification of antiviral defence systems in microbial genomes. Nucleic Acids Research, 2022, 50, W541-W550.	14.5	47
6	Structural rearrangements allow nucleic acid discrimination by type I-D Cascade. Nature Communications, 2022, 13, .	12.8	17
7	Turning down the (C)BASS: Phage-encoded inhibitors jam bacterial immune signaling. Molecular Cell, 2022, 82, 2185-2187.	9.7	4
8	Conquering CRISPR: how phages overcome bacterial adaptive immunity. Current Opinion in Biotechnology, 2021, 68, 30-36.	6.6	47
9	Identification and classification of antiviral defence systems in bacteria and archaea with PADLOC reveals new system types. Nucleic Acids Research, 2021, 49, 10868-10878.	14.5	92
10	Evolution of virulence in a novel family of transmissible megaâ€plasmids. Environmental Microbiology, 2021, 23, 5289-5304.	3.8	5
11	SorTn-seq: a high-throughput functional genomics approach to discovering regulators of bacterial gene expression. Nature Protocols, 2021, 16, 4382-4418.	12.0	7
12	The Rsm (Csr) post-transcriptional regulatory pathway coordinately controls multiple CRISPR–Cas immune systems. Nucleic Acids Research, 2021, 49, 9508-9525.	14.5	9
13	Crystal structure of the anti-CRISPR repressor Aca2. Journal of Structural Biology, 2021, 213, 107752.	2.8	6
14	The Rcs stress response inversely controls surface and CRISPR–Cas adaptive immunity to discriminate plasmids and phages. Nature Microbiology, 2021, 6, 162-172.	13.3	32
15	Bacterial defense islands limit viral attack. Science, 2021, 374, 399-400.	12.6	3
16	A jumbo phage that forms a nucleus-like structure evades CRISPR–Cas DNA targeting but is vulnerable to type III RNA-based immunity. Nature Microbiology, 2020, 5, 48-55.	13.3	123
17	Variation at the common polysaccharide antigen locus drives lipopolysaccharide diversity within the <i>Pseudomonas syringae</i> species complex. Environmental Microbiology, 2020, 22, 5356-5372.	3.8	15
18	Diverse CRISPR-Cas Complexes Require Independent Translation of Small and Large Subunits from a Single Gene. Molecular Cell, 2020, 80, 971-979.e7.	9.7	27

#	Article	IF	CITATIONS
19	A nucleotidyltransferase toxin inhibits growth of <i>Mycobacterium tuberculosis</i> through inactivation of tRNA acceptor stems. Science Advances, 2020, 6, eabb6651.	10.3	30
20	Discovery of multiple anti-CRISPRs highlights anti-defense gene clustering in mobile genetic elements. Nature Communications, 2020, 11, 5652.	12.8	88
21	The arms race between bacteria and their phage foes. Nature, 2020, 577, 327-336.	27.8	514
22	Targeting of temperate phages drives loss of typeÂl CRISPR–Cas systems. Nature, 2020, 578, 149-153.	27.8	71
23	Antitoxin autoregulation of <i>M. tuberculosis</i> toxin-antitoxin expression through negative cooperativity arising from multiple inverted repeat sequences. Biochemical Journal, 2020, 477, 2401-2419.	3.7	9
24	Functional genomics reveals the toxin–antitoxin repertoire and AbiE activity in Serratia. Microbial Genomics, 2020, 6, .	2.0	7
25	Complete Genome Sequences of the Escherichia coli Donor Strains ST18 and MFD pir. Microbiology Resource Announcements, 2020, 9, .	0.6	7
26	Global phylogeography and ancient evolution of the widespread human gut virus crAssphage. Nature Microbiology, 2019, 4, 1727-1736.	13.3	184
27	Expanding the mass range for UVPD-based native top-down mass spectrometry. Chemical Science, 2019, 10, 7163-7171.	7.4	29
28	The autoregulator Aca2 mediates anti-CRISPR repression. Nucleic Acids Research, 2019, 47, 9658-9665.	14.5	49
29	Bacterial dormancy curbs phage epidemics. Nature, 2019, 570, 173-174.	27.8	12
30	GalK limits type I-F CRISPR-Cas expression in a CRP-dependent manner. FEMS Microbiology Letters, 2019, 366, .	1.8	7
31	Genome Sequence of a Jumbo Bacteriophage That Infects the Kiwifruit Phytopathogen Pseudomonas syringae pv. actinidiae. Microbiology Resource Announcements, 2019, 8, .	0.6	14
32	Genome-wide correlation analysis suggests different roles of CRISPR-Cas systems in the acquisition of antibiotic resistance genes in diverse species. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180384.	4.0	46
33	Different genetic and morphological outcomes for phages targeted by single or multiple CRISPR-Cas spacers. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180090.	4.0	24
34	Type I-F CRISPR-Cas resistance against virulent phages results in abortive infection and provides population-level immunity. Nature Communications, 2019, 10, 5526.	12.8	44
35	Bioinformatic evidence of widespread priming in type I and II CRISPR-Cas systems. RNA Biology, 2019, 16, 566-576.	3.1	45
36	Imprecise Spacer Acquisition Generates CRISPR-Cas Immune Diversity through Primed Adaptation. Cell Host and Microbe, 2019, 25, 250-260.e4.	11.0	54

#	Article	IF	CITATIONS
37	Reconstitution of CRISPR adaptation in vitro and its detection by PCR. Methods in Enzymology, 2019, 616, 411-433.	1.0	1
38	CRISPR–Cas impedes archaeal mating. Nature Microbiology, 2019, 4, 2-3.	13.3	1
39	Resistance is not futile: bacterial â€~innate' and CRISPR-Cas â€~adaptive' immune systems. Microbiology (United Kingdom), 2019, 165, 834-841.	1.8	6
40	AbiEi Binds Cooperatively to the Type IV abiE Toxin–Antitoxin Operator Via a Positively-Charged Surface and Causes DNA Bending and Negative Autoregulation. Journal of Molecular Biology, 2018, 430, 1141-1156.	4.2	20
41	CRISPR-Cas-Mediated Phage Resistance Enhances Horizontal Gene Transfer by Transduction. MBio, 2018, 9, .	4.1	103
42	Phage-based biocontrol strategies and their application in agriculture and aquaculture. Biochemical Society Transactions, 2018, 46, 1605-1613.	3.4	59
43	A Unified Resource for Tracking Anti-CRISPR Names. CRISPR Journal, 2018, 1, 304-305.	2.9	94
44	Evolution of Pectobacterium Bacteriophage ΦM1 To Escape Two Bifunctional Type III Toxin-Antitoxin and Abortive Infection Systems through Mutations in a Single Viral Gene. Applied and Environmental Microbiology, 2017, 83, .	3.1	47
45	Spacer capture and integration by a type I-F Cas1–Cas2-3 CRISPR adaptation complex. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E5122-E5128.	7.1	89
46	CRISPR-Cas: Adapting to change. Science, 2017, 356, .	12.6	323
47	Regulation of CRISPR–Cas adaptive immune systems. Current Opinion in Microbiology, 2017, 37, 1-7.	5.1	68
48	Type III CRISPR-Cas systems can provide redundancy to counteract viral escape from type I systems. ELife, 2017, 6, .	6.0	81
49	Transposon insertion libraries for the characterization of mutants from the kiwifruit pathogen Pseudomonas syringae pv. actinidiae. PLoS ONE, 2017, 12, e0172790.	2.5	26
50	Pectobacterium atrosepticum and Pectobacterium carotovorum Harbor Distinct, Independently Acquired Integrative and Conjugative Elements Encoding Coronafacic Acid that Enhance Virulence on Potato Stems. Frontiers in Microbiology, 2016, 7, 397.	3.5	22
51	Structural plasticity and inÂvivo activity of Cas1 from the typeÂl-F CRISPR–Cas system. Biochemical Journal, 2016, 473, 1063-1072.	3.7	8
52	CRISPRDetect: A flexible algorithm to define CRISPR arrays. BMC Genomics, 2016, 17, 356.	2.8	277
53	Inactivation of CRISPR-Cas systems by anti-CRISPR proteins in diverse bacterial species. Nature Microbiology, 2016, 1, 16085.	13.3	271
54	Quorum Sensing Controls Adaptive Immunity through the Regulation of Multiple CRISPR-Cas Systems. Molecular Cell, 2016, 64, 1102-1108.	9.7	183

#	Article	IF	CITATIONS
55	Interference-driven spacer acquisition is dominant over naive and primed adaptation in a native CRISPR–Cas system. Nature Communications, 2016, 7, 12853.	12.8	125
56	CRISPR-Cas gene-editing reveals RsmA and RsmC act through FlhDC to repress the SdhE flavinylation factor and control motility and prodigiosin production in Serratia. Microbiology (United Kingdom), 2016, 162, 1047-1058.	1.8	38
57	The Cpf1 CRISPR-Cas protein expands genome-editing tools. Genome Biology, 2015, 16, 251.	8.8	91
58	Genome, Proteome and Structure of a T7-Like Bacteriophage of the Kiwifruit Canker Phytopathogen Pseudomonas syringae pv. actinidiae. Viruses, 2015, 7, 3361-3379.	3.3	26
59	Phage ΦPan70, a Putative Temperate Phage, Controls Pseudomonas aeruginosa in Planktonic, Biofilm and Burn Mouse Model Assays. Viruses, 2015, 7, 4602-4623.	3.3	42
60	Regulation of the Type I-F CRISPR-Cas system by CRP-cAMP and GalM controls spacer acquisition and interference. Nucleic Acids Research, 2015, 43, 6038-6048.	14.5	59
61	Complete DNA Sequence of Pseudomonas syringae pv. actinidiae, the Causal Agent of Kiwifruit Canker Disease. Genome Announcements, 2015, 3, .	0.8	36
62	Computational Detection of CRISPR/crRNA Targets. Methods in Molecular Biology, 2015, 1311, 77-89.	0.9	7
63	A century of the phage: past, present and future. Nature Reviews Microbiology, 2015, 13, 777-786.	28.6	537
64	Accurate computational prediction of the transcribed strand of CRISPR non-coding RNAs. Bioinformatics, 2014, 30, 1805-1813.	4.1	33
65	A widespread bacteriophage abortive infection system functions through a Type IV toxin–antitoxin mechanism. Nucleic Acids Research, 2014, 42, 4590-4605.	14.5	228
66	Priming in the Type I-F CRISPR-Cas system triggers strand-independent spacer acquisition, bi-directionally from the primed protospacer. Nucleic Acids Research, 2014, 42, 8516-8526.	14.5	171
67	CRISPR–Cas systems: beyond adaptive immunity. Nature Reviews Microbiology, 2014, 12, 317-326.	28.6	263
68	Identification of Bacteriophages for Biocontrol of the Kiwifruit Canker Phytopathogen Pseudomonas syringae pv. actinidiae. Applied and Environmental Microbiology, 2014, 80, 2216-2228.	3.1	101
69	Gene regulation by engineered CRISPR-Cas systems. Current Opinion in Microbiology, 2014, 18, 83-89.	5.1	29
70	The succinate dehydrogenase assembly factor, SdhE, is required for the flavinylation and activation of fumarate reductase in bacteria. FEBS Letters, 2014, 588, 414-421.	2.8	32
71	Remarkable Mechanisms in Microbes to Resist Phage Infections. Annual Review of Virology, 2014, 1, 307-331.	6.7	226
72	Degenerate target sites mediate rapid primed CRISPR adaptation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E1629-38.	7.1	239

#	Article	IF	CITATIONS
73	Novel configurations of type I and II CRISPR–Cas systems in Corynebacterium diphtheriae. Microbiology (United Kingdom), 2013, 159, 2118-2126.	1.8	31
74	Ribonucleases in bacterial toxin–antitoxin systems. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2013, 1829, 523-531.	1.9	77
75	Selectivity and self-assembly in the control of a bacterial toxin by an antitoxic noncoding RNA pseudoknot. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E241-9.	7.1	57
76	Prokaryotic assembly factors for the attachment of flavin to complex II. Biochimica Et Biophysica Acta - Bioenergetics, 2013, 1827, 637-647.	1.0	21
77	CRISPR-Cas systems preferentially target the leading regions of MOB _F conjugative plasmids. RNA Biology, 2013, 10, 749-761.	3.1	32
78	The Conserved RGxxE Motif of the Bacterial FAD Assembly Factor SdhE Is Required for Succinate Dehydrogenase Flavinylation and Activity. Biochemistry, 2013, 52, 7628-7640.	2.5	21
79	Draft Genome Sequence of <i>Serratia</i> sp. Strain ATCC 39006, a Model Bacterium for Analysis of the Biosynthesis and Regulation of Prodigiosin, a Carbapenem, and Gas Vesicles. Genome Announcements, 2013, 1, .	0.8	19
80	The subtypeÂl-F CRISPR–Cas system influences pathogenicity island retention in <i>Pectobacterium atrosepticum</i> via crRNA generation and Csy complex formation. Biochemical Society Transactions, 2013, 41, 1468-1474.	3.4	23
81	Cytotoxic Chromosomal Targeting by CRISPR/Cas Systems Can Reshape Bacterial Genomes and Expel or Remodel Pathogenicity Islands. PLoS Genetics, 2013, 9, e1003454.	3.5	297
82	YgfX (CptA) is a multimeric membrane protein that interacts with the succinate dehydrogenase assembly factor SdhE (YgfY). Microbiology (United Kingdom), 2013, 159, 1352-1365.	1.8	8
83	Chromosomal targeting by CRISPR-Cas systems can contribute to genome plasticity in bacteria. Mobile Genetic Elements, 2013, 3, e26831.	1.8	20
84	CRISPRTarget. RNA Biology, 2013, 10, 817-827.	3.1	272
85	Viral Evasion of a Bacterial Suicide System by RNA–Based Molecular Mimicry Enables Infectious Altruism. PLoS Genetics, 2012, 8, e1003023.	3.5	108
86	Function and Regulation of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) / CRISPR Associated (Cas) Systems. Viruses, 2012, 4, 2291-2311.	3.3	119
87	Viral molecular mimicry circumvents abortive infection and suppresses bacterial suicide to make hosts permissive for replication. Bacteriophage, 2012, 2, e23830.	1.9	9
88	SdhE Is a Conserved Protein Required for Flavinylation of Succinate Dehydrogenase in Bacteria. Journal of Biological Chemistry, 2012, 287, 18418-18428.	3.4	58
89	Identification and classification of bacterial Type III toxin–antitoxin systems encoded in chromosomal and plasmid genomes. Nucleic Acids Research, 2012, 40, 6158-6173.	14.5	129
90	Advances in Bacteriophage-Mediated Control of Plant Pathogens. International Journal of Microbiology, 2012, 2012, 1-11.	2.3	132

#	Article	IF	CITATIONS
91	Memory of viral infections by CRISPR-Cas adaptive immune systems: Acquisition of new information. Virology, 2012, 434, 202-209.	2.4	188
92	In Vivo Protein Interactions and Complex Formation in the Pectobacterium atrosepticum Subtype I-F CRISPR/Cas System. PLoS ONE, 2012, 7, e49549.	2.5	69
93	Csy4 is responsible for CRISPR RNA processing in <i>Pectobacterium atrosepticum</i> . RNA Biology, 2011, 8, 517-528.	3.1	101
94	A processed noncoding RNA regulates an altruistic bacterial antiviral system. Nature Structural and Molecular Biology, 2011, 18, 185-190.	8.2	115
95	PigS and PigP Regulate Prodigiosin Biosynthesis in <i>Serratia</i> via Differential Control of Divergent Operons, Which Include Predicted Transporters of Sulfur-Containing Molecules. Journal of Bacteriology, 2011, 193, 1076-1085.	2.2	54
96	Mutagenesis and Functional Characterization of the RNA and Protein Components of the <i>toxIN</i> Abortive Infection and Toxin-Antitoxin Locus of <i>Erwinia</i> Journal of Bacteriology, 2009, 191, 6029-6039.	2.2	73
97	The PhoBR two-component system regulates antibiotic biosynthesis in Serratia in response to phosphate. BMC Microbiology, 2009, 9, 112.	3.3	38
98	The phage abortive infection system, ToxIN, functions as a protein–RNA toxin–antitoxin pair. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 894-899.	7.1	445
99	Integrated regulation involving quorum sensing, a twoâ€component system, a GCDEF/EAL domain protein and a postâ€transcriptional regulator controls swarming and RhlAâ€dependent surfactant biosynthesis in <i>Serratia</i> . Environmental Microbiology, 2008, 10, 1202-1217.	3.8	65
100	PigZ, a TetR/AcrR family repressor, modulates secondary metabolism via the expression of a putative fourâ€component resistanceâ€nodulationâ€cellâ€division efflux pump, ZrpADBC, in <i>Serratia</i> sp. ATCC 39006. Molecular Microbiology, 2008, 69, 418-435.	2.5	36
101	Virulence and Prodigiosin Antibiotic Biosynthesis in <i>Serratia</i> Are Regulated Pleiotropically by the GGDEF/EAL Domain Protein, PigX. Journal of Bacteriology, 2007, 189, 7653-7662.	2.2	64
102	Anticancer and immunosuppressive properties of bacterial prodiginines. Future Microbiology, 2007, 2, 605-618.	2.0	175
103	Biotechnological exploitation of bacteriophage research. Trends in Biotechnology, 2007, 25, 7-15.	9.3	141
104	The biosynthesis and regulation of bacterial prodiginines. Nature Reviews Microbiology, 2006, 4, 887-899.	28.6	425
105	Biosynthesis of tripyrrole and Î²â€łactam secondary metabolites in <i>Serratia</i> : integration of quorum sensing with multiple new regulatory components in the control of prodigiosin and carbapenem antibiotic production. Molecular Microbiology, 2005, 56, 1495-1517.	2.5	125
106	A GntR family transcriptional regulator (PigT) controls gluconate-mediated repression and defines a new, independent pathway for regulation of the tripyrrole antibiotic, prodigiosin, in Serratia. Microbiology (United Kingdom), 2005, 151, 3833-3845.	1.8	77