List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4616731/publications.pdf Version: 2024-02-01

Ιεςσερ Ννάχρη

#	Article	IF	CITATIONS
1	Double Nanowires for Hybrid Quantum Devices. Advanced Functional Materials, 2022, 32, 2107926.	14.9	9
2	Direct transport between superconducting subgap states in a double quantum dot. Physical Review B, 2022, 105, .	3.2	6
3	Excitations in a superconducting Coulombic energy gap. Nature Communications, 2022, 13, 2243.	12.8	11
4	Signatures of Interactions in the Andreev Spectrum of Nanowire Josephson Junctions. Physical Review Letters, 2022, 128, .	7.8	19
5	From Cooper pair splitting to nonlocal spectroscopy of a Shiba state. Physical Review Research, 2022, 4, .	3.6	7
6	Electronic Transport in Double-Nanowire Superconducting Islands with Multiple Terminals. Nano Letters, 2022, 22, 5765-5772.	9.1	6
7	Integrated bioelectronic proton-gated logic elements utilizing nanoscale patterned Nafion. Materials Horizons, 2021, 8, 224-233.	12.2	9
8	Epitaxial Pb on InAs nanowires for quantum devices. Nature Nanotechnology, 2021, 16, 776-781.	31.5	52
9	Coherent manipulation of an Andreev spin qubit. Science, 2021, 373, 430-433.	12.6	78
10	Josephson junctions in double nanowires bridged by <i>in-situ</i> deposited superconductors. Physical Review Research, 2021, 3, .	3.6	14
11	Andreev Molecule in Parallel InAs Nanowires. Nano Letters, 2021, 21, 7929-7937.	9.1	27
12	Asymmetric Little–Parks oscillations in full shell double nanowires. Scientific Reports, 2021, 11, 19034.	3.3	14
13	Enhancing the NIR Photocurrent in Single GaAs Nanowires with Radial p-i-n Junctions by Uniaxial Strain. Nano Letters, 2021, 21, 9038-9043.	9.1	7
14	Gate-Controlled Supercurrent in Epitaxial Al/InAs Nanowires. Nano Letters, 2021, 21, 9684-9690.	9.1	13
15	Superconductivity and Parity Preservation in As-Grown In Islands on InAs Nanowires. Nano Letters, 2021, 21, 9875-9881.	9.1	7
16	Temperature induced shifts of Yu–Shiba–Rusinov resonances in nanowire-based hybrid quantum dots. Communications Physics, 2020, 3, .	5.3	8
17	From Andreev to Majorana bound states in hybrid superconductor–semiconductor nanowires. Nature Reviews Physics, 2020, 2, 575-594.	26.6	251
18	Two-impurity Yu-Shiba-Rusinov states in coupled quantum dots. Physical Review B, 2020, 102, .	3.2	25

#	Article	IF	CITATIONS
19	Shadow Epitaxy: Shadow Epitaxy for In Situ Growth of Generic Semiconductor/Superconductor Hybrids (Adv. Mater. 23/2020). Advanced Materials, 2020, 32, 2070179.	21.0	0
20	Continuous monitoring of a trapped superconducting spin. Nature Physics, 2020, 16, 1103-1107.	16.7	44
21	Shadow Epitaxy for In Situ Growth of Generic Semiconductor/Superconductor Hybrids. Advanced Materials, 2020, 32, e1908411.	21.0	51
22	Large spatial extension of the zero-energy Yu–Shiba–Rusinov state in a magnetic field. Nature Communications, 2020, 11, 1834.	12.8	17
23	The 2021 quantum materials roadmap. JPhys Materials, 2020, 3, 042006.	4.2	111
24	Triplet-blockaded Josephson supercurrent in double quantum dots. Physical Review B, 2020, 102, .	3.2	17
25	Optical metrology for nanowires grown with molecular beam epitaxy. , 2020, , .		Ο
26	The Effect of Bending Deformation on Charge Transport and Electron Effective Mass of pâ€doped GaAs Nanowires. Physica Status Solidi - Rapid Research Letters, 2019, 13, 1970033.	2.4	1
27	Observation of spin–orbit coupling induced Weyl points in a two-electron double quantum dot. Communications Physics, 2019, 2, .	5.3	11
28	Observation of the 4Ï€-periodic Josephson effect in indium arsenide nanowires. Nature Communications, 2019, 10, 245.	12.8	113
29	The Effect of Bending Deformation on Charge Transport and Electron Effective Mass of pâ€doped GaAs Nanowires. Physica Status Solidi - Rapid Research Letters, 2019, 13, 1900134.	2.4	8
30	Superconducting vanadium/indium-arsenide hybrid nanowires. Nanotechnology, 2019, 30, 294005.	2.6	22
31	Voltage-controlled superconducting quantum bus. Physical Review B, 2019, 99, .	3.2	32
32	Broadband microwave spectroscopy of semiconductor nanowire-based Cooper-pair transistors. Physical Review B, 2019, 99, .	3.2	5
33	Coupling of shells in a carbon nanotube quantum dot. Physical Review B, 2019, 99, .	3.2	0
34	Spin-Orbit Splitting of Andreev States Revealed by Microwave Spectroscopy. Physical Review X, 2019, 9, .	8.9	84
35	Anharmonicity of a superconducting qubit with a few-mode Josephson junction. Physical Review B, 2018, 97, .	3.2	42
36	Evolution of Nanowire Transmon Qubits and Their Coherence in a Magnetic Field. Physical Review Letters, 2018, 120, 100502.	7.8	63

#	Article	IF	CITATIONS
37	Crystal orientation dependence of the spin-orbit coupling in InAs nanowires. Physical Review B, 2018, 97, .	3.2	15
38	Magnetic-field-dependent quasiparticle dynamics of nanowire single-Cooper-pair transistors. Physical Review B, 2018, 98, .	3.2	24
39	High-Quality Reduced Graphene Oxide Electrodes for Sub-Kelvin Studies of Molecular Monolayer Junctions. Journal of Physical Chemistry C, 2018, 122, 25102-25109.	3.1	8
40	Supercurrent in a Double Quantum Dot. Physical Review Letters, 2018, 121, 257701.	7.8	41
41	Understanding GaAs Nanowire Growth in the Ag–Au Seed Materials System. Crystal Growth and Design, 2018, 18, 6702-6712.	3.0	5
42	Scatterometry for optimization of injection molded nanostructures at the fabrication line. International Journal of Advanced Manufacturing Technology, 2018, 99, 2669-2676.	3.0	6
43	Yu–Shiba–Rusinov screening of spins in double quantum dots. Nature Communications, 2018, 9, 2376.	12.8	55
44	Direct Microwave Measurement of Andreev-Bound-State Dynamics in a Semiconductor-Nanowire Josephson Junction. Physical Review Letters, 2018, 121, 047001.	7.8	119
45	Correlation between Electrical Transport and Nanoscale Strain in InAs/In _{0.6} Ga _{0.4} As Core–Shell Nanowires. Nano Letters, 2018, 18, 4949-4956.	9.1	17
46	Effective <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>g</mml:mi></mml:math> Factor of Subgap States in Hybrid Nanowires. Physical Review Letters, 2018, 121, 037703.	7.8	74
47	Nonlocality of Majorana modes in hybrid nanowires. Physical Review B, 2018, 98, .	3.2	173
48	p-GaAs Nanowire Metal–Semiconductor Field-Effect Transistors with Near-Thermal Limit Gating. Nano Letters, 2018, 18, 5673-5680.	9.1	13
49	An STM – SEM setup for characterizing photon and electron induced effects in single photovoltaic nanowires. Nano Energy, 2018, 53, 175-181.	16.0	4
50	Near-thermal limit gating in heavily doped III-V semiconductor nanowires using polymer electrolytes. Physical Review Materials, 2018, 2, .	2.4	6
51	Engineering hybrid epitaxial InAsSb/Al nanowires for stronger topological protection. Physical Review Materials, 2018, 2, .	2.4	65
52	Replacing libraries in scatterometry. Optics Express, 2018, 26, 34622.	3.4	6
53	Towards low-dimensional hole systems in Be-doped GaAs nanowires. Nanotechnology, 2017, 28, 134005.	2.6	8
54	Annealing of Au, Ag and Au–Ag alloy nanoparticle arrays on GaAs (100) and (111)B. Nanotechnology, 2017, 28, 205702.	2.6	11

#	Article	IF	CITATIONS
55	Study on Microgratings Using Imaging, Spectroscopic, and Fourier Lens Scatterometry. Journal of Micro and Nano-Manufacturing, 2017, 5, .	0.7	2
56	Transport Signatures of Quasiparticle Poisoning in a Majorana Island. Physical Review Letters, 2017, 118, 137701.	7.8	84
57	Hybrid Nanowire Ion-to-Electron Transducers for Integrated Bioelectronic Circuitry. Nano Letters, 2017, 17, 827-833.	9.1	26
58	Growth of InAs Wurtzite Nanocrosses from Hexagonal and Cubic Basis. Nano Letters, 2017, 17, 6090-6096.	9.1	29
59	Current–phase relations of few-mode InAs nanowire Josephson junctions. Nature Physics, 2017, 13, 1177-1181.	16.7	68
60	Micro-Raman spectroscopy for the detection of stacking fault density in InAs and GaAs nanowires. Physical Review B, 2017, 96, .	3.2	6
61	In-line characterization of nanostructured mass-produced polymer components using scatterometry. Journal of Micromechanics and Microengineering, 2017, 27, 085004.	2.6	9
62	Normal, superconducting and topological regimes of hybrid double quantum dots. Nature Nanotechnology, 2017, 12, 212-217.	31.5	48
63	Conduction channels of an InAs-Al nanowire Josephson weak link. New Journal of Physics, 2017, 19, 092002.	2.9	47
64	Microwave spectroscopy of spinful Andreev bound states in ballistic semiconductor JosephsonÂjunctions. Nature Physics, 2017, 13, 876-881.	16.7	86
65	Click Chemistry Mediated Functionalization of Vertical Nanowires for Biological Applications. Chemistry - A European Journal, 2016, 22, 496-500.	3.3	13
66	Magnetoresistance engineering and singlet/triplet switching in InAs nanowire quantum dots with ferromagnetic sidegates. Physical Review B, 2016, 94, .	3.2	7
67	Noncollinear Spin-Orbit Magnetic Fields in a Carbon Nanotube Double Quantum Dot. Physical Review Letters, 2016, 117, 276802.	7.8	10
68	Majorana bound state in a coupled quantum-dot hybrid-nanowire system. Science, 2016, 354, 1557-1562.	12.6	816
69	Morphology and composition of oxidized InAs nanowires studied by combined Raman spectroscopy and transmission electron microscopy. Nanotechnology, 2016, 27, 305704.	2.6	18
70	InAs Nanowire with Epitaxial Aluminum as a Single-Electron Transistor with Fixed Tunnel Barriers. Physical Review Applied, 2016, 6, .	3.8	14
71	Ag-catalyzed InAs nanowires grown on transferable graphite flakes. Nanotechnology, 2016, 27, 365603.	2.6	14
72	Tuning Yu-Shiba-Rusinov states in a quantum dot. Physical Review B, 2016, 94, .	3.2	65

#	Article	IF	CITATIONS
73	Electrical tuning of Rashba spin-orbit interaction in multigated InAs nanowires. Physical Review B, 2016, 94, .	3.2	51
74	Gatemon Benchmarking and Two-Qubit Operations. Physical Review Letters, 2016, 116, 150505.	7.8	63
75	Wet etch methods for InAs nanowire patterning and self-aligned electrical contacts. Nanotechnology, 2016, 27, 195303.	2.6	6
76	Nanowire-Aperture Probe: Local Enhanced Fluorescence Detection for the Investigation of Live Cells at the Nanoscale. ACS Photonics, 2016, 3, 1208-1216.	6.6	26
77	Silver as Seed-Particle Material for GaAs Nanowires—Dictating Crystal Phase and Growth Direction by Substrate Orientation. Nano Letters, 2016, 16, 2181-2188.	9.1	33
78	Tuning the response of non-allowed Raman modes in GaAs nanowires. Journal Physics D: Applied Physics, 2016, 49, 095103.	2.8	7
79	Exponential protection of zero modes in Majorana islands. Nature, 2016, 531, 206-209.	27.8	877
80	Semiconductor-Nanowire-Based Superconducting Qubit. Physical Review Letters, 2015, 115, 127001.	7.8	287
81	Magnetic Field Tuning and Quantum Interference in a Cooper Pair Splitter. Physical Review Letters, 2015, 115, 227003.	7.8	59
82	Raman spectroscopy and electrical properties of InAs nanowires with local oxidation enabled by substrate micro-trenches and laser irradiation. Applied Physics Letters, 2015, 107, .	3.3	5
83	Towards a Better Prediction of Cell Settling on Nanostructure Arrays—Simple Means to Complicated Ends. Advanced Functional Materials, 2015, 25, 3246-3255.	14.9	52
84	Hard gap in epitaxial semiconductor–superconductor nanowires. Nature Nanotechnology, 2015, 10, 232-236.	31.5	331
85	Epitaxy of semiconductor–superconductor nanowires. Nature Materials, 2015, 14, 400-406.	27.5	381
86	Probing the spatial electron distribution in InAs nanowires by anisotropic magnetoconductance fluctuations. Physical Review B, 2015, 91, .	3.2	7
87	Gigahertz Quantized Charge Pumping in Bottom-Gate-Defined InAs Nanowire Quantum Dots. Nano Letters, 2015, 15, 4585-4590.	9.1	22
88	Quantum transport in carbon nanotubes. Reviews of Modern Physics, 2015, 87, 703-764.	45.6	292
89	Parity lifetime of bound states in a proximitized semiconductor nanowire. Nature Physics, 2015, 11, 1017-1021.	16.7	160
90	Modulation of Fluorescence Signals from Biomolecules along Nanowires Due to Interaction of Light with Oriented Nanostructures. Nano Letters, 2015, 15, 176-181.	9.1	22

#	Article	IF	CITATIONS
91	Indium arsenide nanowire field-effect transistors for pH and biological sensing. Applied Physics Letters, 2014, 104, .	3.3	22
92	Local electrical tuning of the nonlocal signals in a Cooper pair splitter. Physical Review B, 2014, 90, .	3.2	44
93	A Step Closer to Membrane Protein Multiplexed Nanoarrays Using Biotin-Doped Polypyrrole. ACS Nano, 2014, 8, 1844-1853.	14.6	29
94	Advances in the theory of III–V nanowire growth dynamics. Journal Physics D: Applied Physics, 2013, 46, 313001.	2.8	110
95	Low temperature transport in <i>p</i> -doped InAs nanowires. Applied Physics Letters, 2013, 103, .	3.3	6
96	Tunneling Spectroscopy of Quasiparticle Bound States in a Spinful Josephson Junction. Physical Review Letters, 2013, 110, 217005.	7.8	151
97	Vertical nanowire arrays as a versatile platform for protein detection and analysis. Nanoscale, 2013, 5, 10226.	5.6	37
98	Tuning InAs Nanowire Density for HEK293 Cell Viability, Adhesion, and Morphology: Perspectives for Nanowire-Based Biosensors. ACS Applied Materials & Interfaces, 2013, 5, 10510-10519.	8.0	77
99	A high-mobility two-dimensional electron gas at the spinel/perovskite interface of γ-Al2O3/SrTiO3. Nature Communications, 2013, 4, 1371.	12.8	285
100	Surface-passivated GaAsP single-nanowire solar cells exceeding 10% efficiency grown on silicon. Nature Communications, 2013, 4, 1498.	12.8	192
101	Single-nanowire solar cells beyond the Shockley–Queisser limit. Nature Photonics, 2013, 7, 306-310.	31.4	708
102	A classroom demonstration of reciprocal space. American Journal of Physics, 2013, 81, 274-279.	0.7	5
103	Effects of buffer composition and dilution on nanowire field-effect biosensors. Nanotechnology, 2013, 24, 035501.	2.6	41
104	Ultrathin Reduced Graphene Oxide Films as Transparent Top ontacts for Light Switchable Solidâ€State Molecular Junctions. Advanced Materials, 2013, 25, 4164-4170.	21.0	75
105	Experimental determination of adatom diffusion lengths for growth of InAs nanowires. Journal of Crystal Growth, 2013, 364, 16-22.	1.5	41
106	g-factor anisotropy in nanowire-based InAs quantum dots. , 2013, , .		10
107	Doping incorporation paths in catalyst-free Be-doped GaAs nanowires. Applied Physics Letters, 2013, 102, .	3.3	58
108	Controlling interfacial states in amorphous/crystalline LaAlO3/SrTiO3 heterostructures by electric fields. Applied Physics Letters, 2013, 102, .	3.3	29

#	Article	IF	CITATIONS
109	Electrical contacts to single nanowires: a scalable method allowing multiple devices on a chip. Application to a single nanowire radial p-i-n junction. International Journal of Nanotechnology, 2013, 10, 419.	0.2	9
110	BioFET-SIM: A Tool for the Analysis and Prediction of Signal Changes in Nanowire-Based Field Effect Transistor Biosensors. Lecture Notes in Nanoscale Science and Technology, 2013, , 55-86.	0.8	0
111	<i>In-situ</i> x-ray characterization of wurtzite formation in GaAs nanowires. Applied Physics Letters, 2012, 100, .	3.3	44
112	Comparison of gate geometries for tunable, local barriers in InAs nanowires. Journal of Applied Physics, 2012, 112, .	2.5	5
113	Electrical annealing and temperature dependent transversal conduction in multilayer reduced graphene oxide films for solid-state molecular devices. Physical Chemistry Chemical Physics, 2012, 14, 14277.	2.8	15
114	Suppression of three dimensional twinning for a 100% yield of vertical GaAs nanowires on silicon. Nanoscale, 2012, 4, 1486.	5.6	73
115	Cell membrane conformation at vertical nanowire array interface revealed by fluorescence imaging. Nanotechnology, 2012, 23, 415102.	2.6	92
116	In-situ mechanical characterization of wurtzite InAs nanowires. Solid State Communications, 2012, 152, 1829-1833.	1.9	11
117	An Electrically-Driven GaAs Nanowire Surface Plasmon Source. Nano Letters, 2012, 12, 4943-4947.	9.1	57
118	A Triptyceneâ€Based Approach to Solubilising Carbon Nanotubes and C ₆₀ . Chemistry - A European Journal, 2012, 18, 8716-8723.	3.3	20
119	Solutionâ€Processed Ultrathin Chemically Derived Graphene Films as Soft Top Contacts for Solid tate Molecular Electronic Junctions. Advanced Materials, 2012, 24, 1333-1339.	21.0	82
120	Engineering light absorption in single-nanowire solar cells with metal nanoparticles. New Journal of Physics, 2011, 13, 123026.	2.9	24
121	Three-Dimensional Multiple-Order Twinning of Self-Catalyzed GaAs Nanowires on Si Substrates. Nano Letters, 2011, 11, 3827-3832.	9.1	123
122	Predicting and rationalizing the effect of surface charge distribution and orientation on nano-wire based FET bio-sensors. Nanoscale, 2011, 3, 3635.	5.6	35
123	Quantifying signal changes in nano-wire based biosensors. Nanoscale, 2011, 3, 706-717.	5.6	37
124	Gate-dependent spin–orbit coupling in multielectron carbon nanotubes. Nature Physics, 2011, 7, 348-353.	16.7	122
125	Influence of the oxide layer for growth of self-assisted InAs nanowires on Si(111). Nanoscale Research Letters, 2011, 6, 516.	5.7	30
126	Intact Mammalian Cell Function on Semiconductor Nanowire Arrays: New Perspectives for Cellâ€Based Biosensing. Small, 2011, 7, 640-647.	10.0	79

#	Article	IF	CITATIONS
127	Nanowire Arrays: Intact Mammalian Cell Function on Semiconductor Nanowire Arrays: New Perspectives for Cell-Based Biosensing (Small 1/2011). Small, 2011, 7, 550-550.	10.0	0
128	Gate-Dependent Orbital Magnetic Moments in Carbon Nanotubes. Physical Review Letters, 2011, 107, 186802.	7.8	20
129	Finite-Bias Cooper Pair Splitting. Physical Review Letters, 2011, 107, 136801.	7.8	138
130	Impact of the Liquid Phase Shape on the Structure of III-V Nanowires. Physical Review Letters, 2011, 106, 125505.	7.8	99
131	Coupling between Electronic and Vibrational Excitations in Carbon Nanotubes Filled with C ₆₀ Fullerenes. Acta Physica Polonica A, 2011, 120, 839-841.	0.5	2
132	Ferromagnetic Proximity Effect in a Ferromagnet–Quantum-Dot–Superconductor Device. Physical Review Letters, 2010, 104, 246804.	7.8	75
133	Transport via coupled states in a <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:msub><mml:mtext>C</mml:mtext><mml:mrow><mml:mn>60</mml:mn>< quantum dot. Physical Review B, 2010, 81, .</mml:mrow></mml:msub></mml:mrow></mml:math>	/m ങ്ങ മന്നാ	w> 22mml:m รเ
134	Nanoelectromechanical coupling in fullerene peapods probed by resonant electrical transport experiments. Nature Communications, 2010, 1, 37.	12.8	30
135	Stages in molecular beam epitaxy growth of GaAs nanowires studied by x-ray diffraction. Nanotechnology, 2010, 21, 115603.	2.6	11
136	Specific and reversible immobilization of histidine-tagged proteins on functionalized silicon nanowires. Nanotechnology, 2010, 21, 245105.	2.6	57
137	Structural Phase Control in Self-Catalyzed Growth of GaAs Nanowires on Silicon (111). Nano Letters, 2010, 10, 4475-4482.	9.1	199
138	Superconductivity-enhanced bias spectroscopy in carbon nanotube quantum dots. Physical Review B, 2009, 79, .	3.2	46
139	Mesoscopic conductance fluctuations in InAs nanowire-based SNS junctions. New Journal of Physics, 2009, 11, 113025.	2.9	27
140	Cooper pair splitter realized in a two-quantum-dot Y-junction. Nature, 2009, 461, 960-963.	27.8	426
141	Nonequilibrium cotunneling through a three-level quantum dot. Physical Review B, 2009, 79, .	3.2	7
142	Junctions in Axial IIIâ^'V Heterostructure Nanowires Obtained via an Interchange of Group III Elements. Nano Letters, 2009, 9, 3689-3693.	9.1	84
143	Applications of Nanowire Arrays in Nanomedicine. Journal of Nanoneuroscience, 2009, 1, 3-9.	0.5	35
144	A Genetic Analysis of Carbonâ€Nanotubeâ€Binding Proteins. Small, 2008, 4, 416-420.	10.0	27

#	Article	IF	CITATIONS
145	Old nanotubes, new tricks. Nature Physics, 2008, 4, 266-267.	16.7	0
146	Giant Fluctuations and Gate Control of the <i>g</i> -Factor in InAs Nanowire Quantum Dots. Nano Letters, 2008, 8, 3932-3935.	9.1	90
147	Tunable double dots and Kondo enhanced Andreev transport in InAs nanowires. Journal of Vacuum Science & Technology B, 2008, 26, 1609.	1.3	5
148	The influence of electro-mechanical effects on resonant electron tunneling through small carbon nano-peapods. New Journal of Physics, 2008, 10, 043043.	2.9	14
149	Ambipolar transistor behavior in p-doped InAs nanowires grown by molecular beam epitaxy. Applied Physics Letters, 2008, 92, .	3.3	28
150	Facet structure of GaAs nanowires grown by molecular beam epitaxy. Applied Physics Letters, 2007, 91, 083106.	3.3	47
151	Kondo-Enhanced Andreev Tunneling in InAs Nanowire Quantum Dots. Physical Review Letters, 2007, 99, 126603.	7.8	113
152	Mapping of individual carbon nanotubes in polymer/nanotube composites using electrostatic force microscopy. Applied Physics Letters, 2007, 90, 183108.	3.3	52
153	Molecular beam epitaxy growth of free-standing plane-parallel InAs nanoplates. Nature Nanotechnology, 2007, 2, 761-764.	31.5	43
154	Probing induced defects in individual carbon nanotubes using electrostatic force microscopy. Applied Physics A: Materials Science and Processing, 2007, 88, 309-313.	2.3	18
155	Non-equilibrium singlet–triplet Kondo effect in carbon nanotubes. Nature Physics, 2006, 2, 460-464.	16.7	134
156	Integration of carbon nanotubes with semiconductor technology: fabrication of hybrid devices by Ill–V molecular beam epitaxy. Semiconductor Science and Technology, 2006, 21, S10-S16.	2.0	13
157	Sub-Kelvin transport spectroscopy of fullerene peapod quantum dots. Applied Physics Letters, 2006, 89, 233118.	3.3	28
158	Kondo physics in tunable semiconductor nanowire quantum dots. Physical Review B, 2006, 74, .	3.2	65
159	Single Wall Carbon Nanotubes in Epitaxial Grown Semiconductor Heterostructures. AlP Conference Proceedings, 2005, , .	0.4	0
160	Characterization of Carbon Nanotubes on Insulating Substrates using Electrostatic Force Microscopy. AIP Conference Proceedings, 2005, , .	0.4	0
161	Magnetoresistance in ferromagnetically contacted single-wall carbon nanotubes. Physical Review B, 2005, 72, .	3.2	98
162	Charge Trapping in Carbon Nanotube Loops Demonstrated by Electrostatic Force Microscopy. Nano Letters, 2005, 5, 1838-1841.	9.1	75

#	Article	IF	CITATIONS
163	Integration of Carbon Nanotubes with Semiconductor Technology by Epitaxial Encapsulation. AIP Conference Proceedings, 2004, , .	0.4	2
164	Hybrid Devices from Single Wall Carbon Nanotubes Epitaxially Grown into a Semiconductor Heterostructure. Nano Letters, 2004, 4, 349-352.	9.1	51
165	SINGLE-WALL CARBON NANOTUBES WITH FERROMAGNETIC ELECTRODES. , 2003, , .		1
166	Shell Filling in Closed Single-Wall Carbon Nanotube Quantum Dots. Physical Review Letters, 2002, 89, 046803.	7.8	147
167	Electron Spin in Single Wall Carbon Nanotubes. Physica Scripta, 2002, T102, 22.	2.5	5
168	Gold nanoparticle single-electron transistor with carbon nanotube leads. Applied Physics Letters, 2001, 79, 2106-2108.	3.3	87
169	Quantum dots in suspended single-wall carbon nanotubes. Applied Physics Letters, 2001, 79, 4216-4218.	3.3	66
170	Single-wall carbon nanotube devices prepared by chemical vapor deposition. AIP Conference Proceedings, 2000, , .	0.4	3
171	Kondo physics in carbon nanotubes. Nature, 2000, 408, 342-346.	27.8	611
172	Crossed Nanotube Junctions. Science, 2000, 288, 494-497.	12.6	1,135
173	Bias and temperature dependence of the 0.7 conductance anomaly in quantum point contacts. Physical Review B, 2000, 62, 10950-10957.	3.2	206
174	One-dimensional transport in bundles of single-walled carbon nanotubes. , 1999, , .		1
175	Electrical transport measurements on single-walled carbon nanotubes. Applied Physics A: Materials Science and Processing, 1999, 69, 297-304.	2.3	152
176	Quantum point contacts formed in GaAs/GaAlAs heterostructures by shallow etching and overgrowth. Solid-State Electronics, 1998, 42, 1103-1107.	1.4	2
177	Temperature dependence of the "0.7―2e2/h quasi-plateau in strongly confined quantum point contacts. Physica B: Condensed Matter, 1998, 249-251, 180-184.	2.7	43
178	Magnetic Field Control of the NO2Photodissociation Threshold. Physical Review Letters, 1997, 78, 3093-3096.	7.8	9
179	Symmetry Breaking and Spectral Statistics of Acoustic Resonances in Quartz Blocks. Physical Review Letters, 1996, 77, 4918-4921.	7.8	104
180	The photodissociation threshold of NO2: Precise determination of its energy and density of states. Journal of Chemical Physics, 1996, 105, 1287-1290.	3.0	85

#	Article	IF	CITATIONS
181	Spectral Statistics of Acoustic Resonances in Aluminum Blocks. Physical Review Letters, 1995, 75, 1546-1549.	7.8	112
182	Scalable Platform for Nanocrystalâ€Based Quantum Electronics. Advanced Functional Materials, 0, , 2112941.	14.9	1