
Xiuli Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/461572/publications.pdf Version: 2024-02-01

XIIII WANC

#	Article	IF	CITATIONS
1	CD19/BAFF-R dual-targeted CAR T cells for the treatment of mixed antigen-negative variants of acute lymphoblastic leukemia. Leukemia, 2022, 36, 1015-1024.	7.2	15
2	Large-scale manufacturing and characterization of CMV-CD19CAR T cells. , 2022, 10, e003461.		9
3	Single-cell analysis by mass cytometry reveals CD19 CAR T cell spatiotemporal plasticity in patients. Oncolmmunology, 2022, 11, 2040772.	4.6	8
4	Pre-clinical data supporting immunotherapy for HIV using CMV-HIV-specific CAR TÂcells with CMV vaccine. Molecular Therapy - Methods and Clinical Development, 2022, 25, 344-359.	4.1	6
5	Loss of SIRT1 inhibits hematopoietic stem cell aging and age-dependent mixed phenotype acute leukemia. Communications Biology, 2022, 5, 396.	4.4	7
6	Abstract 2732: A mathematical model for optimization of combination therapy involving targeted radionuclide and CAR-T cell therapy. Cancer Research, 2022, 82, 2732-2732.	0.9	1
7	Daratumumab induces mechanisms of immune activation through CD38+ NK cell targeting. Leukemia, 2021, 35, 189-200.	7.2	56
8	The Cerebroventricular Environment Modifies CAR T Cells for Potent Activity against Both Central Nervous System and Systemic Lymphoma. Cancer Immunology Research, 2021, 9, 75-88.	3.4	24
9	CD19-directed CAR T-cell therapy for treatment of primary CNS lymphoma. Blood Advances, 2021, 5, 4059-4063.	5.2	62
10	A Mathematical Modeling Approach for Targeted Radionuclide and Chimeric Antigen Receptor T Cell Combination Therapy. Cancers, 2021, 13, 5171.	3.7	7
11	Dexamethasone Enhanced CAR T Cell Persistence and Function through Upregulation of Interleukin 7 Receptor. Blood, 2021, 138, 1715-1715.	1.4	1
12	Systematically optimized BCMA/CS1 bispecific CAR-T cells robustly control heterogeneous multiple myeloma. Nature Communications, 2020, 11, 2283.	12.8	130
13	Antitumor efficacy of BAFF-R targeting CAR T cells manufactured under clinic-ready conditions. Cancer Immunology, Immunotherapy, 2020, 69, 2139-2145.	4.2	14
14	Myeloid cell–targeted miR-146a mimic inhibits NF-κB–driven inflammation and leukemia progression in vivo. Blood, 2020, 135, 167-180.	1.4	88
15	CAR T cells targeting BAFF-R can overcome CD19 antigen loss in B cell malignancies. Science Translational Medicine, 2019, 11, .	12.4	67
16	IL15 Enhances CAR-T Cell Antitumor Activity by Reducing mTORC1 Activity and Preserving Their Stem Cell Memory Phenotype. Cancer Immunology Research, 2019, 7, 759-772.	3.4	235
17	CD19-Targeting CAR-T Cell Therapy in CNS Lymphoma. Blood, 2019, 134, 4075-4075.	1.4	10
18	Lenalidomide Enhances the Function of CS1 Chimeric Antigen Receptor–Redirected T Cells Against Multiple Myeloma. Clinical Cancer Research, 2018, 24, 106-119.	7.0	136

XIULI WANG

#	Article	IF	CITATIONS
19	Regulation of miR-34b/c-targeted gene expression program by SUMOylation. Nucleic Acids Research, 2018, 46, 7108-7123.	14.5	16
20	Novel BAFF-R CAR T-Cell Therapy for CD19 Antigen-Loss Relapsed B Cell Tumors. Blood, 2018, 132, 1411-1411.	1.4	0
21	Preclinical data support leveraging CS1 chimeric antigen receptor T-cell therapy for systemic light chain amyloidosis. Cytotherapy, 2017, 19, 861-866.	0.7	20
22	Ex vivo Akt inhibition promotes the generation of potent CD19CAR T cells for adoptive immunotherapy. , 2017, 5, 26.		72
23	Regression of Glioblastoma after Chimeric Antigen Receptor T-Cell Therapy. New England Journal of Medicine, 2016, 375, 2561-2569.	27.0	1,326
24	Phase 1 studies of central memory–derived CD19 CAR T–cell therapy following autologous HSCT in patients with B-cell NHL. Blood, 2016, 127, 2980-2990.	1.4	264
25	Comparison of naÃ ⁻ ve and central memory derived CD8 ⁺ effector cell engraftment fitness and function following adoptive transfer. Oncolmmunology, 2016, 5, e1072671.	4.6	25
26	Lenalidomide Enhances the Function of CS1 Chimeric Antigen Receptor Redirected-T Cells Against Multiple Myeloma. Blood, 2016, 128, 812-812.	1.4	4
27	New Therapeutic Approach for Central Nervous System Lymphoma By Intracerebroventricular Delivery of CD19CAR T Cells. Blood, 2016, 128, 2161-2161.	1.4	0
28	CMVpp65 Vaccine Enhances the Antitumor Efficacy of Adoptively Transferred CD19-Redirected CMV-Specific T Cells. Clinical Cancer Research, 2015, 21, 2993-3002.	7.0	52
29	Chimeric Antigen Receptors With Mutated IgG4 Fc Spacer Avoid Fc Receptor Binding and Improve T Cell Persistence and Antitumor Efficacy. Molecular Therapy, 2015, 23, 757-768.	8.2	169
30	Phase I Studies of Cellular Immunotherapy Using Central Memory Derived-CD19-Specific T Cells Following Autologous Stem Cell Transplantation for Patients with High-Risk Intermediate Grade B-Lineage Non-Hodgkin Lymphoma. Blood, 2015, 126, 930-930.	1.4	2
31	Ex Vivo AKT Inhibition Promotes the Generation of Potent CD19CAR T Cells for Adoptive Immunotherapy. Blood, 2015, 126, 3086-3086.	1.4	0
32	CS-1 Re-Directed Central Memory T Cell Therapy for Multiple Myeloma. Blood, 2014, 124, 1114-1114.	1.4	1
33	Acute myeloid leukemia therapeutics. Oncolmmunology, 2013, 2, e27214.	4.6	9
34	Phenotypic and Functional Attributes of Lentivirus-modified CD19-specific Human CD8+ Central Memory T Cells Manufactured at Clinical Scale. Journal of Immunotherapy, 2012, 35, 689-701.	2.4	128
35	Engraftment of human central memory-derived effector CD8+ T cells in immunodeficient mice. Blood, 2011, 117, 1888-1898.	1.4	151
36	A transgene-encoded cell surface polypeptide for selection, in vivo tracking, and ablation of engineered cells. Blood, 2011, 118, 1255-1263.	1.4	496

XIULI WANG

#	Article	IF	CITATIONS
37	Engraftment Fitness of Human Central Memory-Derived Effector CD8+ T Cells In Immunodeficient Mice. Blood, 2010, 116, 1019-1019.	1.4	0
38	Fluorescent Immunohistochemistry and In Situ Hybridization Analysis of Pancreas. Methods in Molecular Biology, 2009, 560, 191-201.	0.9	2
39	In Vivo Biosafety Model To Assess Risk of Adverse Events from Retroviral and Lentiviral Vectors Blood, 2007, 110, 2595-2595.	1.4	0
40	Formation of Pancreatic Duct Epithelium from Bone Marrow During Neonatal Development. Stem Cells, 2006, 24, 307-314.	3.2	32
41	Fluorescent Immunohistochemistry and In Situ Hybridization Analysis of Mouse Pancreas Using Low-power Antigen-retrieval Technique. Journal of Histochemistry and Cytochemistry, 2006, 54, 843-847.	2.5	15
42	Formation of Pancreatic Duct Cells from Bone Marrow during Neonatal Development Blood, 2004, 104, 675-675.	1.4	5
43	Albumin-expressing hepatocyte-like cells develop in the livers of immune-deficient mice that received transplants of highly purified human hematopoietic stem cells. Blood, 2003, 101, 4201-4208.	1.4	241
44	Dynamic tracking of human hematopoietic stem cell engraftment using in vivo bioluminescence imaging. Blood, 2003, 102, 3478-3482.	1.4	149