Gustavo E Scuseria

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4614953/publications.pdf

Version: 2024-02-01

393 papers 62,669 citations

87 h-index

4146

246 g-index

400 all docs

400 docs citations

400 times ranked

33901 citing authors

#	Article	IF	Citations
1	Thermal coupled cluster theory for SU(2) systems. Physical Review B, 2022, 105, .	3.2	5
2	A power series approximation in symmetry projected coupled cluster theory. Journal of Chemical Physics, 2022, 156, 104105.	3.0	3
3	Coupled Cluster and Perturbation Theories Based on a Cluster Mean-Field Reference Applied to Strongly Correlated Spin Systems. Journal of Chemical Theory and Computation, 2022, 18, 4293-4303.	5.3	8
4	Confronting Racism in Chemistry Journals. ACS ES&T Engineering, 2021, 1, 3-5.	7.6	0
5	Confronting Racism in Chemistry Journals. ACS ES&T Water, 2021, 1, 3-5.	4.6	O
6	Exploring non-linear correlators on AGP. Journal of Chemical Physics, 2021, 154, 074113.	3.0	26
7	Construction of linearly independent non-orthogonal AGP states. Journal of Chemical Physics, 2021, 154, 114112.	3.0	15
8	Advancing solid-state band gap predictions. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 , .	7.1	3
9	Correlating AGP on a quantum computer. Quantum Science and Technology, 2021, 6, 014004.	5.8	37
10	Assessing combinations of singlet-paired coupled cluster and density functional theory for treating electron correlation in closed and open shells. Molecular Physics, 2020, 118, 1615144.	1.7	1
11	Confronting Racism in Chemistry Journals. ACS Pharmacology and Translational Science, 2020, 3, 559-561.	4.9	O
12	Confronting Racism in Chemistry Journals. Biochemistry, 2020, 59, 2313-2315.	2.5	0
13	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. ACS Biomaterials Science and Engineering, 2020, 6, 2707-2708.	5. 2	O
14	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Central Science, 2020, 6, 589-590.	11.3	0
15	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Chemical Biology, 2020, 15, 1282-1283.	3.4	0
16	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. ACS Chemical Neuroscience, 2020, 11, 1196-1197.	3.5	0
17	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Earth and Space Chemistry, 2020, 4, 672-673.	2.7	0
18	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Energy Letters, 2020, 5, 1610-1611.	17.4	1

#	Article	IF	CITATIONS
19	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Macro Letters, 2020, 9, 666-667.	4.8	0
20	Update to Our Reader, Reviewer, and Author Communities—April 2020. , 2020, 2, 563-564.		0
21	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Nano, 2020, 14, 5151-5152.	14.6	2
22	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Photonics, 2020, 7, 1080-1081.	6.6	0
23	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Pharmacology and Translational Science, 2020, 3, 455-456.	4.9	0
24	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. ACS Sustainable Chemistry and Engineering, 2020, 8, 6574-6575.	6.7	0
25	Update to Our Reader, Reviewer, and Author Communities—April 2020. Analytical Chemistry, 2020, 92, 6187-6188.	6.5	0
26	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemistry of Materials, 2020, 32, 3678-3679.	6.7	0
27	Update to Our Reader, Reviewer, and Author Communities—April 2020. Environmental Science and Technology Letters, 2020, 7, 280-281.	8.7	1
28	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Journal of Chemical Education, 2020, 97, 1217-1218.	2.3	1
29	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Proteome Research, 2020, 19, 1883-1884.	3.7	0
30	Confronting Racism in Chemistry Journals. Langmuir, 2020, 36, 7155-7157.	3.5	0
31	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Polymer Materials, 2020, 2, 1739-1740.	4.4	0
32	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. ACS Combinatorial Science, 2020, 22, 223-224.	3.8	0
33	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. ACS Medicinal Chemistry Letters, 2020, 11, 1060-1061.	2.8	0
34	Wave function methods for canonical ensemble thermal averages in correlated many-fermion systems. Journal of Chemical Physics, 2020, 153, 124115.	3.0	15
35	Editorial Confronting Racism in Chemistry Journals. , 2020, 2, 829-831.		0
36	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry Letters, 2020, 11, 5279-5281.	4.6	1

#	Article	IF	CITATIONS
37	Confronting Racism in Chemistry Journals. ACS Applied Energy Materials, 2020, 3, 6016-6018.	5.1	O
38	Confronting Racism in Chemistry Journals. ACS Central Science, 2020, 6, 1012-1014.	11.3	1
39	Confronting Racism in Chemistry Journals. Industrial & Engineering Chemistry Research, 2020, 59, 11915-11917.	3.7	0
40	Confronting Racism in Chemistry Journals. Journal of Natural Products, 2020, 83, 2057-2059.	3.0	0
41	Confronting Racism in Chemistry Journals. ACS Medicinal Chemistry Letters, 2020, 11, 1354-1356.	2.8	0
42	Confronting Racism in Chemistry Journals. Journal of the American Society for Mass Spectrometry, 2020, 31, 1321-1323.	2.8	1
43	Confronting Racism in Chemistry Journals. Energy & Energy & 2020, 34, 7771-7773.	5.1	0
44	Confronting Racism in Chemistry Journals. ACS Sensors, 2020, 5, 1858-1860.	7.8	0
45	Geminal Replacement Models Based on AGP. Journal of Chemical Theory and Computation, 2020, 16, 6358-6367.	5. 3	22
46	Confronting Racism in Chemistry Journals. ACS Nano, 2020, 14, 7675-7677.	14.6	2
47	Correlating the antisymmetrized geminal power wave function. Journal of Chemical Physics, 2020, 153, 084111.	3.0	28
48	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Biochemistry, 2020, 59, 1641-1642.	2.5	0
49	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical & Engineering Data, 2020, 65, 2253-2254.	1.9	0
50	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Organic Process Research and Development, 2020, 24, 872-873.	2.7	0
51	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Omega, 2020, 5, 9624-9625.	3.5	0
52	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. ACS Applied Electronic Materials, 2020, 2, 1184-1185.	4.3	0
53	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. ACS Applied Materials & Samp; Interfaces, 2020, 12, 20147-20148.	8.0	5
54	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry C, 2020, 124, 9629-9630.	3.1	0

#	Article	IF	CITATIONS
55	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry Letters, 2020, 11, 3571-3572.	4.6	О
56	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Synthetic Biology, 2020, 9, 979-980.	3.8	0
57	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Energy Materials, 2020, 3, 4091-4092.	5.1	0
58	Confronting Racism in Chemistry Journals. Journal of Chemical Theory and Computation, 2020, 16, 4003-4005.	5. 3	0
59	Confronting Racism in Chemistry Journals. Journal of Organic Chemistry, 2020, 85, 8297-8299.	3.2	0
60	Confronting Racism in Chemistry Journals. Analytical Chemistry, 2020, 92, 8625-8627.	6. 5	0
61	Confronting Racism in Chemistry Journals. Journal of Chemical Education, 2020, 97, 1695-1697.	2.3	0
62	Confronting Racism in Chemistry Journals. Organic Process Research and Development, 2020, 24, 1215-1217.	2.7	0
63	Confronting Racism in Chemistry Journals. ACS Sustainable Chemistry and Engineering, 2020, 8, .	6.7	0
64	Confronting Racism in Chemistry Journals. Chemistry of Materials, 2020, 32, 5369-5371.	6.7	0
65	Confronting Racism in Chemistry Journals. Chemical Research in Toxicology, 2020, 33, 1511-1513.	3.3	0
66	Confronting Racism in Chemistry Journals. Inorganic Chemistry, 2020, 59, 8639-8641.	4.0	0
67	Confronting Racism in Chemistry Journals. ACS Applied Nano Materials, 2020, 3, 6131-6133.	5.0	0
68	Confronting Racism in Chemistry Journals. ACS Applied Polymer Materials, 2020, 2, 2496-2498.	4.4	0
69	Confronting Racism in Chemistry Journals. ACS Chemical Biology, 2020, 15, 1719-1721.	3.4	0
70	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Theory and Computation, 2020, 16, 2881-2882.	5.3	0
71	Confronting Racism in Chemistry Journals. Organic Letters, 2020, 22, 4919-4921.	4.6	4
72	Confronting Racism in Chemistry Journals. ACS Applied Materials & Samp; Interfaces, 2020, 12, 28925-28927.	8.0	13

#	Article	IF	CITATIONS
73	Confronting Racism in Chemistry Journals. Crystal Growth and Design, 2020, 20, 4201-4203.	3.0	1
74	Confronting Racism in Chemistry Journals. Chemical Reviews, 2020, 120, 5795-5797.	47.7	2
75	Confronting Racism in Chemistry Journals. ACS Catalysis, 2020, 10, 7307-7309.	11.2	1
76	Confronting Racism in Chemistry Journals. Biomacromolecules, 2020, 21, 2543-2545.	5.4	0
77	Confronting Racism in Chemistry Journals. Journal of Medicinal Chemistry, 2020, 63, 6575-6577.	6.4	0
78	Confronting Racism in Chemistry Journals. Macromolecules, 2020, 53, 5015-5017.	4.8	0
79	Confronting Racism in Chemistry Journals. Nano Letters, 2020, 20, 4715-4717.	9.1	5
80	Confronting Racism in Chemistry Journals. Organometallics, 2020, 39, 2331-2333.	2.3	0
81	Confronting Racism in Chemistry Journals. Journal of the American Chemical Society, 2020, 142, 11319-11321.	13.7	1
82	Confronting Racism in Chemistry Journals. Accounts of Chemical Research, 2020, 53, 1257-1259.	15.6	0
83	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry A, 2020, 124, 5271-5273.	2.5	0
84	Confronting Racism in Chemistry Journals. ACS Energy Letters, 2020, 5, 2291-2293.	17.4	0
85	Confronting Racism in Chemistry Journals. Journal of Chemical Information and Modeling, 2020, 60, 3325-3327.	5.4	0
86	Confronting Racism in Chemistry Journals. Journal of Proteome Research, 2020, 19, 2911-2913.	3.7	0
87	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry B, 2020, 124, 5335-5337.	2.6	1
88	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Journal of Agricultural and Food Chemistry, 2020, 68, 5019-5020.	5.2	0
89	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry B, 2020, 124, 3603-3604.	2.6	0
90	Confronting Racism in Chemistry Journals. Bioconjugate Chemistry, 2020, 31, 1693-1695.	3.6	0

#	Article	IF	CITATIONS
91	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. ACS Applied Nano Materials, 2020, 3, 3960-3961.	5.0	0
92	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Journal of Natural Products, 2020, 83, 1357-1358.	3.0	0
93	Confronting Racism in Chemistry Journals. ACS Synthetic Biology, 2020, 9, 1487-1489.	3.8	0
94	Confronting Racism in Chemistry Journals. Journal of Chemical & Engineering Data, 2020, 65, 3403-3405.	1.9	0
95	Update to Our Reader, Reviewer, and Author Communities—April 2020. Bioconjugate Chemistry, 2020, 31, 1211-1212.	3.6	0
96	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Health and Safety, 2020, 27, 133-134.	2.1	0
97	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemical Research in Toxicology, 2020, 33, 1509-1510.	3.3	0
98	Update to Our Reader, Reviewer, and Author Communities—April 2020. Energy & Fuels, 2020, 34, 5107-5108.	5.1	0
99	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Bio Materials, 2020, 3, 2873-2874.	4. 6	0
100	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Organic Chemistry, 2020, 85, 5751-5752.	3.2	0
101	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Journal of the American Society for Mass Spectrometry, 2020, 31, 1006-1007.	2.8	0
102	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Accounts of Chemical Research, 2020, 53, 1001-1002.	15.6	0
103	Update to Our Reader, Reviewer, and Author Communities—April 2020. Biomacromolecules, 2020, 21, 1966-1967.	5.4	0
104	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Chemical Reviews, 2020, 120, 3939-3940.	47.7	0
105	Update to Our Reader, Reviewer, and Author Communities—April 2020. Environmental Science & Technology, 2020, 54, 5307-5308.	10.0	0
106	Update to Our Reader, Reviewer, and Author Communities—April 2020. Langmuir, 2020, 36, 4565-4566.	3. 5	0
107	Update to Our Reader, Reviewer, and Author Communities—April 2020. Molecular Pharmaceutics, 2020, 17, 1445-1446.	4.6	0
108	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. ACS Infectious Diseases, 2020, 6, 891-892.	3.8	0

#	Article	IF	Citations
109	Update to Our Reader, Reviewer, and Author Communities—April 2020. Crystal Growth and Design, 2020, 20, 2817-2818.	3.0	1
110	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Journal of Medicinal Chemistry, 2020, 63, 4409-4410.	6.4	0
111	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry A, 2020, 124, 3501-3502.	2.5	0
112	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Nano Letters, 2020, 20, 2935-2936.	9.1	0
113	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Sensors, 2020, 5, 1251-1252.	7.8	0
114	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Information and Modeling, 2020, 60, 2651-2652.	5.4	0
115	Update to Our Reader, Reviewer, and Author Communities—April 2020. Industrial & Engineering Chemistry Research, 2020, 59, 8509-8510.	3.7	0
116	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Journal of the American Chemical Society, 2020, 142, 8059-8060.	13.7	3
117	Update to Our Reader, Reviewer, and Author Communities—April 2020. Inorganic Chemistry, 2020, 59, 5796-5797.	4.0	0
118	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organometallics, 2020, 39, 1665-1666.	2.3	0
119	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organic Letters, 2020, 22, 3307-3308.	4.6	0
120	Confronting Racism in Chemistry Journals. ACS Biomaterials Science and Engineering, 2020, 6, 3690-3692.	5.2	1
121	Confronting Racism in Chemistry Journals. ACS Omega, 2020, 5, 14857-14859.	3.5	1
122	Confronting Racism in Chemistry Journals. ACS Applied Electronic Materials, 2020, 2, 1774-1776.	4.3	0
123	Confronting Racism in Chemistry Journals. Journal of Agricultural and Food Chemistry, 2020, 68, 6941-6943.	5.2	0
124	Confronting Racism in Chemistry Journals. ACS Earth and Space Chemistry, 2020, 4, 961-963.	2.7	0
125	Confronting Racism in Chemistry Journals. Environmental Science and Technology Letters, 2020, 7, 447-449.	8.7	0
126	Confronting Racism in Chemistry Journals. ACS Combinatorial Science, 2020, 22, 327-329.	3.8	0

#	Article	IF	CITATIONS
127	Confronting Racism in Chemistry Journals. ACS Infectious Diseases, 2020, 6, 1529-1531.	3.8	O
128	Confronting Racism in Chemistry Journals. ACS Applied Bio Materials, 2020, 3, 3925-3927.	4.6	0
129	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry C, 2020, 124, 14069-14071.	3.1	0
130	Confronting Racism in Chemistry Journals. ACS Macro Letters, 2020, 9, 1004-1006.	4.8	0
131	Confronting Racism in Chemistry Journals. Molecular Pharmaceutics, 2020, 17, 2229-2231.	4.6	1
132	Confronting Racism in Chemistry Journals. ACS Chemical Neuroscience, 2020, 11, 1852-1854.	3.5	1
133	Confronting Racism in Chemistry Journals. ACS Photonics, 2020, 7, 1586-1588.	6.6	0
134	Confronting Racism in Chemistry Journals. Environmental Science & Environmenta	10.0	0
135	Confronting Racism in Chemistry Journals. Journal of Chemical Health and Safety, 2020, 27, 198-200.	2.1	0
136	Geminal-based configuration interaction. Journal of Chemical Physics, 2019, 151, .	3.0	31
137	Thermofield Theory for Finite-Temperature Coupled Cluster. Journal of Chemical Theory and Computation, 2019, 15, 6127-6136.	5.3	30
138	Thermofield theory for finite-temperature quantum chemistry. Journal of Chemical Physics, 2019, 150, 154109.	3.0	30
139	Polynomial-product states: A symmetry-projection-based factorization of the full coupled cluster wavefunction in terms of polynomials of double excitations. Journal of Chemical Physics, 2019, 150, 144108.	3.0	9
140	Efficient evaluation of AGP reduced density matrices. Journal of Chemical Physics, 2019, 151, 184103.	3.0	26
141	Exact parameterization of fermionic wave functions via unitary coupled cluster theory. Journal of Chemical Physics, 2019, 151, 244112.	3.0	124
142	On the difference between variational and unitary coupled cluster theories. Journal of Chemical Physics, 2018, 148, 044107.	3.0	70
143	Hartree–Fock symmetry breaking around conical intersections. Journal of Chemical Physics, 2018, 148, 024109.	3.0	11
144	Influence of broken-pair excitations on the exact pair wavefunction. Molecular Physics, 2018, 116, 186-193.	1.7	8

#	Article	IF	Citations
145	Magnetic Structure of Density Matrices. Journal of Chemical Theory and Computation, 2018, 14, 649-659.	5.3	12
146	Projected coupled cluster theory: Optimization of cluster amplitudes in the presence of symmetry projection. Journal of Chemical Physics, 2018, 149, 164108.	3.0	18
147	Assessment of the Tao-Mo nonempirical semilocal density functional in applications to solids and surfaces. Physical Review B, 2017, 95, .	3.2	37
148	Merging symmetry projection methods with coupled cluster theory: Lessons from the Lipkin model Hamiltonian. Journal of Chemical Physics, 2017, 146, 054110.	3.0	30
149	Understanding band gaps of solids in generalized Kohn–Sham theory. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 2801-2806.	7.1	423
150	Projected Hartree-Fock theory as a polynomial of particle-hole excitations and its combination with variational coupled cluster theory. Journal of Chemical Physics, 2017, 146, 184105.	3.0	22
151	Semilocal exchange hole with an application to range-separated density functionals. Physical Review B, 2017, 95, .	3.2	19
152	Towards the Solution of the Many-Electron Problem in Real Materials: Equation of State of the Hydrogen Chain with State-of-the-Art Many-Body Methods. Physical Review X, 2017, 7, .	8.9	171
153	Spin-projected generalized Hartree-Fock method as a polynomial of particle-hole excitations. Physical Review A, 2017, 96, .	2.5	11
154	Combining symmetry collective states with coupled-cluster theory: Lessons from the Agassi model Hamiltonian. Physical Review C, 2017, 95, .	2.9	11
155	Projected coupled cluster theory. Journal of Chemical Physics, 2017, 147, 064111.	3.0	56
156	Electronic Structure and Properties of Berkelium Iodates. Journal of the American Chemical Society, 2017, 139, 13361-13375.	13.7	25
157	Attenuated coupled cluster: a heuristic polynomial similarity transformation incorporating spin symmetry projection into traditional coupled cluster theory. Molecular Physics, 2017, 115, 2673-2683.	1.7	11
158	Spin polynomial similarity transformation for repulsive Hamiltonians: interpolating between coupled cluster and spin-projected unrestricted Hartree–Fock. Physical Chemistry Chemical Physics, 2017, 19, 22385-22394.	2.8	4
159	Tensor-structured coupled cluster theory. Journal of Chemical Physics, 2017, 147, 184113.	3.0	48
160	Recoupling the singlet- and triplet-pairing channels in single-reference coupled cluster theory. Journal of Chemical Physics, 2016, 145, 134103.	3.0	13
161	Blind test of density-functional-based methods on intermolecular interaction energies. Journal of Chemical Physics, 2016, 145, 124105.	3.0	97
162	Singlet-paired coupled cluster theory for open shells. Journal of Chemical Physics, 2016, 144, 244117.	3.0	19

#	Article	IF	CITATIONS
163	Using full configuration interaction quantum Monte Carlo in a seniority zero space to investigate the correlation energy equivalence of pair coupled cluster doubles and doubly occupied configuration interaction. Journal of Chemical Physics, 2016, 144, 094112.	3.0	26
164	Performance of a nonempirical density functional on molecules and hydrogen-bonded complexes. Journal of Chemical Physics, 2016, 145, 234306.	3.0	25
165	Predicting Band Gaps with Hybrid Density Functionals. Journal of Physical Chemistry Letters, 2016, 7, 4165-4170.	4.6	369
166	Polynomial similarity transformation theory: A smooth interpolation between coupled cluster doubles and projected BCS applied to the reduced BCS Hamiltonian. Physical Review B, 2016, 93, .	3.2	53
167	Ring-locking enables selective anhydrosugar synthesis from carbohydrate pyrolysis. Green Chemistry, 2016, 18, 5438-5447.	9.0	29
168	Communication: Projected Hartree Fock theory as a polynomial similarity transformation theory of single excitations. Journal of Chemical Physics, 2016, 145, .	3.0	28
169	The two pillars: density and spin-density functional theories. Molecular Physics, 2016, 114, 928-931.	1.7	6
170	Graphene Nanoribbons-Based Ultrasensitive Chemical Detectors. Journal of Physical Chemistry C, 2016, 120, 3791-3797.	3.1	11
171	Combinations of coupled cluster, density functionals, and the random phase approximation for describing static and dynamic correlation, and van der Waals interactions. Molecular Physics, 2016, 114, 997-1018.	1.7	23
172	Lie algebraic similarity transformed Hamiltonians for lattice model systems. Physical Review B, 2015, 91, .	3.2	23
173	Cluster-based mean-field and perturbative description of strongly correlated fermion systems: Application to the one- and two-dimensional Hubbard model. Physical Review B, 2015, 92, .	3.2	20
174	Actinide chemistry using singlet-paired coupled cluster and its combinations with density functionals. Journal of Chemical Physics, 2015, 143, 244106.	3.0	22
175	Seniority number description of potential energy surfaces: Symmetric dissociation of water, N2, C2, and Be2. Journal of Chemical Physics, 2015, 143, 094105.	3.0	36
176	Solutions of the Two-Dimensional Hubbard Model: Benchmarks and Results from a Wide Range of Numerical Algorithms. Physical Review X, 2015, 5, .	8.9	398
177	Range separated hybrids of pair coupled cluster doubles and density functionals. Physical Chemistry Chemical Physics, 2015, 17, 22412-22422.	2.8	40
178	Can Single-Reference Coupled Cluster Theory Describe Static Correlation?. Journal of Chemical Theory and Computation, 2015, 11, 3171-3179.	5.3	103
179	Synergy between pair coupled cluster doubles and pair density functional theory. Journal of Chemical Physics, 2015, 142, 044109.	3.0	36
180	On the equivalence of LIST and DIIS methods for convergence acceleration. Journal of Chemical Physics, 2015, 142, 164104.	3.0	7

#	Article	IF	CITATIONS
181	Pair extended coupled cluster doubles. Journal of Chemical Physics, 2015, 142, 214116.	3.0	53
182	Can Gap Tuning Schemes of Long-Range Corrected Hybrid Functionals Improve the Description of Hyperpolarizabilities?. Journal of Physical Chemistry B, 2015, 119, 1202-1212.	2.6	54
183	Seniority-based coupled cluster theory. Journal of Chemical Physics, 2014, 141, 244104.	3.0	110
184	Analytic energy gradient for the projected Hartree–Fock method. Journal of Chemical Physics, 2014, 140, 204101.	3.0	15
185	Symmetry-projected wave functions in quantum Monte Carlo calculations. Physical Review B, 2014, 89,	3.2	43
186	Seniority zero pair coupled cluster doubles theory. Journal of Chemical Physics, 2014, 140, 214113.	3.0	147
187	Sign problem in full configuration interaction quantum Monte Carlo: Linear and sublinear representation regimes for the exact wave function. Physical Review B, 2014, 90, .	3.2	31
188	Variational description of the ground state of the repulsive two-dimensional Hubbard model in terms of nonorthogonal symmetry-projected Slater determinants. Physical Review B, 2014, 90, .	3.2	11
189	Range-Separated Brueckner Coupled Cluster Doubles Theory. Physical Review Letters, 2014, 112, 133002.	7.8	37
190	Can Short- and Middle-Range Hybrids Describe the Hyperpolarizabilities of Long-Range Charge-Transfer Compounds?. Journal of Physical Chemistry A, 2014, 118, 11787-11796.	2.5	52
191	Density matrix embedding from broken symmetry lattice mean fields. Physical Review B, 2014, 89, .	3.2	103
192	Coupled cluster channels in the homogeneous electron gas. Journal of Chemical Physics, 2014, 140, 124102.	3.0	36
193	Multireference symmetry-projected variational approximation for the ground state of the doped one-dimensional Hubbard model. Physical Review B, 2014, 89, .	3.2	7
194	A computational study of the nonlinear optical properties of carbazole derivatives: theory refines experiment. Theoretical Chemistry Accounts, 2014, 133, 1.	1.4	41
195	Electron correlation in solids via density embedding theory. Journal of Chemical Physics, 2014, 141, 054113.	3.0	75
196	Potential energy curves for Mo ₂ : multi-component symmetry-projected Hartree–Fock and beyond. Molecular Physics, 2014, 112, 1938-1946.	1.7	9
197	Electronic correlation without double counting via a combination of spin projected Hartree-Fock and density functional theories. Journal of Chemical Physics, 2014, 140, 244102.	3.0	26
198	Polyradical Character and Spin Frustration in Fullerene Molecules: An Ab Initio Non-Collinear Hartree–Fock Study. Journal of Physical Chemistry A, 2014, 118, 9925-9940.	2.5	43

#	Article	IF	Citations
199	Prediction of the linear and nonlinear optical properties of tetrahydronaphthalone derivatives via long-range corrected hybrid functionals. Molecular Physics, 2014, 112, 3165-3172.	1.7	21
200	Quasiparticle coupled cluster theory for pairing interactions. Physical Review C, 2014, 89, .	2.9	88
201	Nonlinear optical properties of DPO and DMPO: a theoretical and computational study. Theoretical Chemistry Accounts, 2013, 132, 1.	1.4	24
202	Density Functionals that Recognize Covalent, Metallic, and Weak Bonds. Physical Review Letters, 2013, 111, 106401.	7.8	168
203	Photochromic and nonlinear optical properties of fulgides: A density functional theory study. Computational and Theoretical Chemistry, 2013, 1022, 82-85.	2.5	29
204	Role of screened exact exchange in accurately describing properties of transition metal oxides: Modeling defects in LaAlO3. Physical Review B, 2013, 88, .	3.2	5
205	Testing density functionals for structural phase transitions of solids under pressure: Si, SiO <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow><mml:mn>2</mml:mn></mml:msub></mml:math> , and Zr. Physical Review B. 2013, 88	3.2	87
206	Optical band gap of NpO2 and PuO2 from optical absorbance of epitaxial films. Journal of Applied Physics, 2013, 113, .	2.5	58
207	Particle-particle and quasiparticle random phase approximations: Connections to coupled cluster theory. Journal of Chemical Physics, 2013, 139, 104113.	3.0	76
208	Density Functional Theory Studies of the Electronic Structure of Solid State Actinide Oxides. Chemical Reviews, 2013, 113, 1063-1096.	47.7	191
209	xmins:mmi="http://www.w3.org/1998/Math/Math/Math/Mith display="inline"> <mmi:msub><mmi:mrow></mmi:mrow><mml:mn>3</mml:mn>, LaAlO<mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow><mml:mn>3</mml:mn></mml:msub></mml:math>, and LaTiO<mml:math< td=""><td>3.2</td><td>51</td></mml:math<></mmi:msub>	3.2	51
210	Assessment of long-range corrected functionals for the prediction of non-linear optical properties of organic materials. Chemical Physics Letters, 2013, 575, 122-125.	2.6	62
211	Entanglement and Polyradical Character of Polycyclic Aromatic Hydrocarbons Predicted by Projected Hartree–Fock Theory. Journal of Physical Chemistry B, 2013, 117, 12750-12758.	2.6	82
212	On Pair Functions for Strong Correlations. Journal of Chemical Theory and Computation, 2013, 9, 2857-2869.	5.3	24
213	Excited electronic states from a variational approach based on symmetry-projected Hartree–Fock configurations. Journal of Chemical Physics, 2013, 139, 224110.	3.0	28
214	Predicting Singlet–Triplet Energy Splittings with Projected Hartree–Fock Methods. Journal of Physical Chemistry A, 2013, 117, 8073-8080.	2.5	29
215	Multi-component symmetry-projected approach for molecular ground state correlations. Journal of Chemical Physics, 2013, 139, 204102.	3.0	51
216	Capturing static and dynamic correlations by a combination of projected Hartree-Fock and density functional theories. Journal of Chemical Physics, 2013, 138, 134102.	3.0	31

#	Article	IF	Citations
217	Multireference symmetry-projected variational approaches for ground and excited states of the one-dimensional Hubbard model. Physical Review B, 2013, 87, .	3.2	44
218	Linearized Jastrow-style fluctuations on spin-projected Hartree-Fock. Journal of Chemical Physics, 2013, 139, 234113.	3.0	14
219	Renormalized second-order perturbation theory for the electron correlation energy: Concept, implementation, and benchmarks. Physical Review B, 2013, 88, .	3.2	113
220	Proper and improper zero energy modes in Hartree-Fock theory and their relevance for symmetry breaking and restoration. Journal of Chemical Physics, 2013, 139, 154107.	3.0	24
221	Assessment of correlation energies based on the random-phase approximation. New Journal of Physics, 2012, 14, 043002.	2.9	137
222	Symmetry-projected variational approach for ground and excited states of the two-dimensional Hubbard model. Physical Review B, 2012, 85, .	3.2	42
223	<mml:math <="" p="" xmlns:mml="http://www.w3.org/1998/Math/MathML"> display="inline"><mml:mi>N</mml:mi></mml:math> -electron Slater determinants from nonunitary canonical transformations of fermion operators. Physical Review A, 2012, 86, .	2.5	14
224	Exploring Copper Oxide Cores Using the Projected Hartree–Fock Method. Journal of Chemical Theory and Computation, 2012, 8, 4944-4949.	5.3	33
225	Projected Hartree–Fock theory. Journal of Chemical Physics, 2012, 136, 164109.	3.0	191
226	Multideterminant Wave Functions in Quantum Monte Carlo. Journal of Chemical Theory and Computation, 2012, 8, 2181-2188.	5. 3	110
227	Modeling of the cubic and antiferrodistortive phases of SrTiO <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow><mml:mn>3</mml:mn></mml:msub></mml:math> with screened hybrid density functional theory. Physical Review B, 2011, 84, .	3.2	36
228	Long-range-corrected hybrids using a range-separated Perdew-Burke-Ernzerhof functional and random phase approximation correlation. Journal of Chemical Physics, 2011, 135, 094105.	3.0	33
229	Seniority and orbital symmetry as tools for establishing a full configuration interaction hierarchy. Journal of Chemical Physics, 2011, 135, 044119.	3.0	121
230	The indirect to direct band gap transition in multilayered MoS2 as predicted by screened hybrid density functional theory. Applied Physics Letters, 2011, 99, .	3.3	519
231	Generalized Hartree–Fock Description of Molecular Dissociation. Journal of Chemical Theory and Computation, 2011, 7, 2667-2674.	5.3	64
232	Screened hybrid and self-consistent <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi mathvariant="italic">GW</mml:mi></mml:mrow></mml:math> calculations of cadmium/magnesium indium sulfide materials. Physical Review B, 2011, 83, .	3.2	16
233	Accurate treatment of solids with the HSE screened hybrid. Physica Status Solidi (B): Basic Research, 2011, 248, 767-774.	1.5	258
234	Projected quasiparticle theory for molecular electronic structure. Journal of Chemical Physics, 2011, 135, 124108.	3.0	148

#	Article	IF	Citations
235	5f Electronic Structure and Fermiology of Pu Materials. Materials Research Society Symposia Proceedings, 2010, 1264, 1.	0.1	5
236	Hybrid functionals including random phase approximation correlation and second-order screened exchange. Journal of Chemical Physics, 2010, 132, 094103.	3.0	131
237	Constrained-pairing mean-field theory. III. Inclusion of density functional exchange and correlation effects via alternative densities. Journal of Chemical Physics, 2010, 132, 024111.	3.0	30
238	Many-electron self-interaction and spin polarization errors in local hybrid density functionals. Journal of Chemical Physics, 2010, 133, 134116.	3.0	83
239	Range-separated local hybrids. Journal of Chemical Physics, 2010, 132, 224106.	3.0	41
240	The connection between self-interaction and static correlation: a random phase approximation perspective. Molecular Physics, 2010, 108, 2511-2517.	1.7	79
241	Description of magnetic interactions in strongly correlated solids via range-separated hybrid functionals. Physical Review B, 2009, 79, .	3.2	44
242	Long-range-corrected hybrid density functionals including random phase approximation correlation: Application to noncovalent interactions. Journal of Chemical Physics, 2009, 131, 034110.	3.0	82
243	Constrained-pairing mean-field theory. II. Exact treatment of dissociations to nondegenerate orbitals. Journal of Chemical Physics, 2009, 131, 164119.	3.0	41
244	Local hybrids as a perturbation to global hybrid functionals. Journal of Chemical Physics, 2009, 131, 154112.	3.0	33
245	The role of the reference state in long-range random phase approximation correlation. Journal of Chemical Physics, 2009, 131, 154106.	3.0	29
246	Locally rangeâ€separated hybrids as linear combinations of rangeâ€separated local hybrids. International Journal of Quantum Chemistry, 2009, 109, 2023-2032.	2.0	28
247	Strong correlations via constrained-pairing mean-field theory. Journal of Chemical Physics, 2009, 131, 121102.	3.0	82
248	Long-Range-Corrected Hybrids Based on a New Model Exchange Hole. Journal of Chemical Theory and Computation, 2009, 5, 754-762.	5.3	72
249	Evaluation of Range-Separated Hybrid and Other Density Functional Approaches on Test Sets Relevant for Transition Metal-Based Homogeneous Catalysts. Journal of Physical Chemistry A, 2009, 113, 11742-11749.	2.5	50
250	Regularized Gradient Expansion for Atoms, Molecules, and Solids. Journal of Chemical Theory and Computation, 2009, 5, 763-769.	5.3	36
251	Coulomb-only second-order perturbation theory in long-range-corrected hybrid density functionals. Physical Chemistry Chemical Physics, 2009, 11, 9677.	2.8	29
252	Moleculeâ°'Surface Orientational Averaging in Surface Enhanced Raman Optical Activity Spectroscopy. Journal of Physical Chemistry C, 2009, 113, 9445-9449.	3.1	19

#	Article	IF	CITATIONS
253	Long-range-corrected hybrids including random phase approximation correlation. Journal of Chemical Physics, 2009, 130, 081105.	3.0	158
254	Accurate Hartree-Fock energy of extended systems using large Gaussian basis sets. Physical Review B, 2009, 80, .	3.2	47
255	Can short-range hybrids describe long-range-dependent properties?. Journal of Chemical Physics, 2009, 131, 044108.	3.0	426
256	Screened hybrid density functionals for solid-state chemistry and physics. Physical Chemistry Chemical Physics, 2009, 11, 443-454.	2.8	384
257	Assessment of a density functional with full exact exchange and balanced non-locality of correlation. Molecular Physics, 2009, 107, 1077-1088.	1.7	17
258	Dispersion in the Mott insulator UO ₂ : A comparison of photoemission spectroscopy and screened hybrid density functional theory. Journal of Computational Chemistry, 2008, 29, 2288-2294.	3.3	65
259	Revisiting the nonlinear optical properties of polybutatriene and polydiacetylene with density functional theory. Chemical Physics Letters, 2008, 456, 101-104.	2.6	22
260	Extensive TD-DFT investigation of the first electronic transition in substituted azobenzenes. Chemical Physics Letters, 2008, 465, 226-229.	2.6	96
261	TD-DFT Performance for the Visible Absorption Spectra of Organic Dyes:  Conventional versus Long-Range Hybrids. Journal of Chemical Theory and Computation, 2008, 4, 123-135.	5.3	766
262	The ground state correlation energy of the random phase approximation from a ring coupled cluster doubles approach. Journal of Chemical Physics, 2008, 129, 231101.	3.0	261
263	Generalized gradient approximation model exchange holes for range-separated hybrids. Journal of Chemical Physics, 2008, 128, 194105.	3.0	238
264	Exact-exchange energy density in the gauge of a semilocal density-functional approximation. Physical Review A, 2008, 77, .	2.5	104
265	Half-metallic graphene nanodots: A comprehensive first-principles theoretical study. Physical Review B, 2008, 77, .	3.2	290
266	Accurate solid-state band gaps via screened hybrid electronic structure calculations. Journal of Chemical Physics, 2008, 129, 011102.	3.0	147
267	Analytically Calculated Polarizability of Carbon Nanotubes:  Single Wall, Coaxial, and Bundled Systems. Journal of Physical Chemistry C, 2008, 112, 1396-1400.	3.1	26
268	Resolution of the identity atomic orbital Laplace transformed second order MÃ,ller–Plesset theory for nonconducting periodic systems. Physical Chemistry Chemical Physics, 2008, 10, 3421.	2.8	60
269	Assessment of a Middle-Range Hybrid Functional. Journal of Chemical Theory and Computation, 2008, 4, 1254-1262.	5.3	155
270	Density functional with full exact exchange, balanced nonlocality of correlation, and constraint satisfaction. Physical Review A, 2008, 78, .	2.5	221

#	Article	IF	Citations
271	Hybrid functionals with local range separation. Journal of Chemical Physics, 2008, 129, 124103.	3.0	134
272	Self-consistent generalized Kohn-Sham local hybrid functionals of screened exchange: Combining local and range-separated hybridization. Journal of Chemical Physics, 2008, 129, 124110.	3.0	68
273	Hartree–Fock orbitals significantly improve the reaction barrier heights predicted by semilocal density functionals. Journal of Chemical Physics, 2008, 128, 244112.	3.0	89
274	Understanding and correcting the self-interaction error in the electrical response of hydrogen chains. Physical Review A, 2008, 77, .	2.5	52
275	Parameterized local hybrid functionals from density-matrix similarity metrics. Journal of Chemical Physics, 2008, 128, 084111.	3.0	42
276	Density functionals that are one- and two- are not always many-electron self-interaction-free, as shown for H2+, He2+, LiH+, and Ne2+. Journal of Chemical Physics, 2007, 126, 104102.	3.0	274
277	Noncollinear magnetism in density functional calculations. Physical Review B, 2007, 75, .	3.2	83
278	One-parameter optimization of a nonempirical meta-generalized-gradient-approximation for the exchange-correlation energy. Physical Review A, 2007, 76, .	2.5	37
279	The importance of middle-range Hartree-Fock-type exchange for hybrid density functionals. Journal of Chemical Physics, 2007, 127, 221103.	3.0	152
280	Local hybrid functionals based on density matrix products. Journal of Chemical Physics, 2007, 127, 164117.	3.0	54
281	Edge effects in finite elongated graphene nanoribbons. Physical Review B, 2007, 76, .	3.2	148
282	Assessment of long-range corrected functionals performance for n→π* transitions in organic dyes. Journal of Chemical Physics, 2007, 127, 094102.	3.0	119
283	Covalency in the actinide dioxides: Systematic study of the electronic properties using screened hybrid density functional theory. Physical Review B, 2007, 76, .	3.2	266
284	Exchange and correlation in open systems of fluctuating electron number. Physical Review A, 2007, 76,	2.5	140
285	Tests of functionals for systems with fractional electron number. Journal of Chemical Physics, 2007, 126, 154109.	3.0	559
286	Importance of short-range versus long-range Hartree-Fock exchange for the performance of hybrid density functionals. Journal of Chemical Physics, 2006, 125, 074106.	3.0	823
287	Parametrization of Atomic Energies to Improve Small Basis Set Density Functional Thermochemistry. Journal of Chemical Theory and Computation, 2006, 2, 1045-1049.	5. 3	17
288	Assessment of a long-range corrected hybrid functional. Journal of Chemical Physics, 2006, 125, 234109.	3.0	1,526

#	Article	lF	Citations
289	Energy storage capacity of polymeric nitrogen. Molecular Physics, 2006, 104, 745-749.	1.7	42
290	Theoretical Nitrogen NMR Chemical Shifts in Octahedral Boron Nitride Cages. Journal of Physical Chemistry A, 2006, 110, 10844-10847.	2.5	26
291	Spurious fractional charge on dissociated atoms: Pervasive and resilient self-interaction error of common density functionals. Journal of Chemical Physics, 2006, 125, 194112.	3.0	383
292	Comparison of screened hybrid density functional theory to diffusion Monte Carlo in calculations of total energies of silicon phases and defects. Physical Review B, 2006, 74, .	3.2	131
293	Mott transition of MnO under pressure: A comparison of correlated band theories. Physical Review B, 2006, 74, .	3.2	60
294	Progress in the development of exchange-correlation functionals. , 2005, , 669-724.		108
295	Doping of Polyaniline by Acidâ^Base Chemistry:Â Density Functional Calculations with Periodic Boundary Conditions. Journal of the American Chemical Society, 2005, 127, 11318-11327.	13.7	107
296	All-Electron Hybrid Density Functional Calculations on UFn and UCln (n = $1\hat{a}^{\circ}$ 6). Journal of Chemical Theory and Computation, 2005, 1, 612-616.	5.3	36
297	Energy band gaps and lattice parameters evaluated with the Heyd-Scuseria-Ernzerhof screened hybrid functional. Journal of Chemical Physics, 2005, 123, 174101.	3.0	1,604
298	Assessment of Density Functionals for Predicting One-Bond Carbonâ^'Hydrogen NMR Spinâ^'Spin Coupling Constants. Journal of Chemical Theory and Computation, 2005, 1, 541-545.	5.3	66
299	Prescription for the design and selection of density functional approximations: More constraint satisfaction with fewer fits. Journal of Chemical Physics, 2005, 123, 062201.	3.0	769
300	Theoretical study of the electronic properties of narrow single-walled carbon nanotubes: Beyond the local density approximation. Journal of Chemical Physics, 2004, 121, 10376-10379.	3.0	53
301	Effect of oxygen chemisorption on the energy band gap of a chiral semiconducting single-walled carbon nanotube. Chemical Physics Letters, 2004, 389, 289-292.	2.6	53
302	Nuclear magnetic resonance shielding tensors calculated with kinetic energy density-dependent exchange-correlation functionals. Chemical Physics Letters, 2004, 390, 408-412.	2.6	42
303	Meta-generalized gradient approximation: Explanation of a realistic nonempirical density functional. Journal of Chemical Physics, 2004, 120, 6898-6911.	3.0	431
304	Assessment and validation of a screened Coulomb hybrid density functional. Journal of Chemical Physics, 2004, 120, 7274-7280.	3.0	698
305	Efficient hybrid density functional calculations in solids: Assessment of the Heyd–Scuseria–Ernzerhof screened Coulomb hybrid functional. Journal of Chemical Physics, 2004, 121, 1187-1192.	3.0	1,932
306	Climbing the Density Functional Ladder: Nonempirical Meta–Generalized Gradient Approximation Designed for Molecules and Solids. Physical Review Letters, 2003, 91, 146401.	7.8	5 , 673

#	Article	IF	CITATIONS
307	Comparative assessment of a new nonempirical density functional: Molecules and hydrogen-bonded complexes. Journal of Chemical Physics, 2003, 119, 12129-12137.	3.0	2,157
308	Hybrid functionals based on a screened Coulomb potential. Journal of Chemical Physics, 2003, 118, 8207-8215.	3.0	14,063
309	Local hybrid functionals. Journal of Chemical Physics, 2003, 118, 1068-1073.	3.0	298
310	Thermodynamics of yield in boron nitride nanotubes. Physical Review B, 2003, 68, .	3.2	68
311	A new correlation functional based on a transcorrelated Hamiltonian. Journal of Chemical Physics, 2003, 118, 2464.	3.0	25
312	Assessment of simple exchange-correlation energy functionals of the one-particle density matrix. Journal of Chemical Physics, 2002, 117, 2489-2495.	3.0	62
313	Functionals of quantities other than the electron density: Approximations to the exchange energy. Journal of Chemical Physics, 2002, 116, 3980-3984.	3.0	12
314	Functionals of the square kinetic energy density. Journal of Chemical Physics, 2002, 117, 3074-3080.	3.0	7
315	Ab initio molecular dynamics: Propagating the density matrix with gaussian orbitals. IV. Formal analysis of the deviations from born-oppenheimer dynamics. Israel Journal of Chemistry, 2002, 42, 191-202.	2.3	71
316	Optimization of density matrix functionals by the Hartree–Fock–Bogoliubov method. Journal of Chemical Physics, 2002, 117, 11107-11112.	3.0	43
317	Mechanically induced defects and strength of BN nanotubes. Physical Review B, 2002, 65, .	3.2	132
318	Title is missing!. Journal of Cluster Science, 2002, 13, 587-599.	3.3	4
319	Exchange energy functionals based on the full fourth-order density matrix expansion. Journal of Chemical Physics, 2001, 114, 10591-10597.	3.0	16
320	Characterization of Six Isomers of [84]Fullerene C84by Electrochemistry, Electron Spin Resonance Spectroscopy, and Molecular Energy Levels Calculations. Journal of Physical Chemistry A, 2001, 105, 4627-4632.	2.5	38
321	Structure and Conformational Behavior of Biopolymers by Density Functional Calculations Employing Periodic Boundary Conditions. I. The Case of Polyglycine, Polyalanine, and Poly-α-aminoisobutyric Acid in Vacuo. Journal of the American Chemical Society, 2001, 123, 3311-3322.	13.7	117
322	Atomic orbital Laplace-transformed second-order Møllerâ€"Plesset theory for periodic systems. Journal of Chemical Physics, 2001, 115, 9698-9707.	3.0	193
323	The conformational behavior of polyglycine as predicted by a density functional model with periodic boundary conditions. Journal of Chemical Physics, 2001, 114, 2541-2549.	3.0	53
324	Geometry optimization of Kringle 1 of plasminogen using the PM3 semiempirical method. International Journal of Quantum Chemistry, 2000, 77, 82-89.	2.0	9

#	Article	IF	CITATIONS
325	Electron correlation in large molecular systems using the atomic orbital formalism. The case of intermolecular interactions in crystalline urea as an example. Journal of Computational Chemistry, 2000, 21, 1524-1531.	3.3	24
326	Bounding the extrapolated correlation energy using Padī 1_2 2 approximants. International Journal of Quantum Chemistry, 2000, 79, 222-234.	2.0	13
327	The infrared vibrational spectra of the two major C84 isomers. Chemical Physics Letters, 2000, 332, 35-42.	2.6	17
328	Performance of recently developed kinetic energy density functionals for the calculation of hydrogen binding strengths and hydrogen-bonded structures. Theoretical Chemistry Accounts, 2000, 104, 439-444.	1.4	96
329	Assessment of the Van Voorhis-Scuseria exchange-correlation functional for predicting excitation energies using time-dependent density functional theory. Theoretical Chemistry Accounts, 2000, 105, 62-67.	1.4	7
330	Perspective on "Inhomogeneous electron gas". Theoretical Chemistry Accounts, 2000, 103, 259-262.	1.4	13
331	Converging difficult SCF cases with conjugate gradient density matrix search. Physical Chemistry Chemical Physics, 2000, 2, 2173-2176.	2.8	20
332	The slowly-varying noninteracting electron gas in terms of its kinetic energy density. Journal of Chemical Physics, 2000, 112, 5270-5274.	3.0	7
333	Linear scaling density matrix search based onsignmatrices. Journal of Chemical Physics, 2000, 113, 6035-6041.	3.0	43
334	Scaling reduction of the perturbative triples correction (T) to coupled cluster theory via Laplace transform formalism. Journal of Chemical Physics, 2000, 113, 10451-10458.	3.0	57
335	An efficient finite field approach for calculating static electric polarizabilities of periodic systems. Journal of Chemical Physics, 2000, 113, 7779-7785.	3.0	50
336	The meta-GGA functional: Thermochemistry with a kinetic energy density dependent exchange-correlation functional. Journal of Chemical Physics, 2000, 112, 2643-2649.	3.0	114
337	Kinetics of the Reaction of Propargyl Radical with Nitric Oxide. Journal of Physical Chemistry A, 2000, 104, 3356-3363.	2.5	15
338	Kinetic energy density dependent approximations to the exchange energy. Journal of Chemical Physics, 1999, 111, 911-915.	3.0	83
339	Range definitions for Gaussian-type charge distributions in fast multipole methods. Journal of Chemical Physics, 1999, 111, 2351-2356.	3.0	29
340	Improving self-consistent field convergence by varying occupation numbers. Journal of Chemical Physics, 1999, 110, 695-700.	3.0	106
341	Linear scaling coupled cluster and perturbation theories in the atomic orbital basis. Journal of Chemical Physics, 1999, 111, 8330-8343.	3.0	313
342	Linear Scaling Density Functional Calculations with Gaussian Orbitals. Journal of Physical Chemistry A, 1999, 103, 4782-4790.	2.5	422

#	Article	IF	Citations
343	Linear scaling second-order Moller–Plesset theory in the atomic orbital basis for large molecular systems. Journal of Chemical Physics, 1999, 110, 3660-3671.	3.0	389
344	What is the best alternative to diagonalization of the Hamiltonian in large scale semiempirical calculations?. Journal of Chemical Physics, 1999, 110, 1321-1328.	3.0	120
345	Assessment of the Perdew–Burke–Ernzerhof exchange-correlation functional. Journal of Chemical Physics, 1999, 110, 5029-5036.	3.0	3,841
346	Density functional study of the infrared vibrational spectra of C70. Journal of Raman Spectroscopy, 1998, 29, 483-487.	2.5	26
347	Why are buckyonions round?. Theoretical Chemistry Accounts, 1998, 99, 29-33.	1.4	56
348	A novel form for the exchange-correlation energy functional. Journal of Chemical Physics, 1998, 109, 400-410.	3.0	724
349	Comparison of conjugate gradient density matrix search and Chebyshev expansion methods for avoiding diagonalization in large-scale electronic structure calculations. Journal of Chemical Physics, 1998, 109, 3308-3312.	3.0	35
350	An ab initio study of CrC: A comparison of different levels of theory including density functional methods. Journal of Chemical Physics, 1997, 106, 1491-1494.	3.0	23
351	Linear scaling conjugate gradient density matrix search as an alternative to diagonalization for first principles electronic structure calculations. Journal of Chemical Physics, 1997, 106, 5569-5577.	3.0	247
352	Semiempirical methods with conjugate gradient density matrix search to replace diagonalization for molecular systems containing thousands of atoms. Journal of Chemical Physics, 1997, 107, 425-431.	3.0	138
353	The use of density matrix expansions for calculating molecular exchange energies. Molecular Physics, 1996, 87, 835-843.	1.7	28
354	The use of density matrix expansions for calculating molecular exchange energies. Molecular Physics, 1996, 87, 835-843.	1.7	12
355	A quantitative study of the scaling properties of the Hartree–Fock method. Journal of Chemical Physics, 1995, 102, 8448-8452.	3.0	139
356	Genetic algorithms: A robust scheme for geometry optimizations and global minimum structure problems. Journal of Computational Chemistry, 1995, 16, 729-742.	3.3	54
357	On the connections between Brueckner-coupled-cluster, density-dependent Hartree-Fock, and density functional theory. International Journal of Quantum Chemistry, 1995, 55, 165-171.	2.0	21
358	THEORETICAL STUDIES OF FULLERENES. Advanced Series in Physical Chemistry, 1995, , 279-310.	1.5	10
359	The elusive signature of CH5+. Nature, 1993, 366, 512-513.	27.8	76
360	Role of sp3 carbon and 7-membered rings in fullerene annealing and fragmentation. Nature, 1993, 366, 665-667.	27.8	188

#	Article	IF	Citations
361	Ab initio theoretical predictions of C28, C28H4, C28F4, (Ti@C28)H4, and M@C28 (M=Mg, Al, Si, S, Ca, Sc,) Tj E	TQg1 _{.0} 1 0.7	784314 rgBT 158
362	Abinitiotheoretical study of arsine and trimethylgallium: The formation of GaAs by a stable adduct. Journal of Chemical Physics, 1992, 96, 3723-3731.	3.0	20
363	A comparison of the coupled cluster and internallyâ€contracted averaged coupledâ€pairâ€functional levels of theory for the calculation of the MCH2+ binding energies for M=Sc to Cu. Journal of Chemical Physics, 1992, 97, 7471-7473.	3.0	33
364	A coupledâ€cluster study of the electron affinity of the oxygen atom. Journal of Chemical Physics, 1992, 96, 9025-9029.	3.0	19
365	A coupled cluster study of the equilibrium bond distance in methane. Molecular Physics, 1992, 75, 1099-1103.	1.7	3
366	Comparison of coupledâ€eluster results with a hybrid of Hartree–Fock and density functional theory. Journal of Chemical Physics, 1992, 97, 7528-7530.	3.0	181
367	Analytic evaluation of energy gradients for the singles and doubles coupled cluster method including perturbative triple excitations: Theory and applications to FOOF and Cr2. Journal of Chemical Physics, 1991, 94, 442-447.	3.0	253
368	Application of open-shell coupled cluster theory to the ground state of GaAs. Theoretica Chimica Acta, 1991, 80, 215-219.	0.8	8
369	A coupled cluster study of the classical barrier height of the F+H2→FH+H reaction. Journal of Chemical Physics, 1991, 95, 7426-7436.	3.0	33
370	Abinitiotheoretical study of small GaAs clusters. Journal of Chemical Physics, 1991, 95, 6602-6606.	3.0	54
371	The infrared spectrum of cyclotetraoxygen, O4: A theoretical investigation employing the single and double excitation coupled cluster method. Journal of Chemical Physics, 1990, 92, 6077-6080.	3.0	45
372	A coupled cluster study of As2. Journal of Chemical Physics, 1990, 92, 6722-6727.	3.0	27
373	An assessment for the full coupled cluster method including all single, double, and triple excitations: The diatomic molecules LiH, Li2, BH, LiF, C2, BeO, CN+, BF, NO+, and F2. Journal of Chemical Physics, 1990, 92, 568-573.	3.0	64
374	The vibrational frequencies of ozone. Journal of Chemical Physics, 1990, 93, 489-494.	3.0	152
375	Coupled cluster energy derivatives. Analytic Hessian for the closedâ€shell coupled cluster singles and doubles wave function: Theory and applications. Journal of Chemical Physics, 1990, 92, 4924-4940.	3.0	222
376	The calculation of electric dipole moments from the polarization propagator. Theory and application. Journal of Chemical Physics, 1989, 91, 364-367.	3.0	10
377	The photodissociation of formaldehyde: A coupled cluster study including connected triple excitations of the transition state barrier height for H2COâ†'H2+CO. Journal of Chemical Physics, 1989, 90, 3629-3636.	3.0	108
378	Is coupled cluster singles and doubles (CCSD) more computationally intensive than quadratic configuration interaction (QCISD)?. Journal of Chemical Physics, 1989, 90, 3700-3703.	3.0	1,065

#	Article	IF	CITATIONS
379	The electric dipole moment of ArH+. Disagreement between theory and experiment. Journal of Chemical Physics, 1989, 90, 6486-6490.	3.0	24
380	Ordering of the O–O stretching vibrational frequencies in ozone. Journal of Chemical Physics, 1989, 90, 5635-5637.	3.0	40
381	A systematic theoretical study of harmonic vibrational frequencies: The single and double excitation coupled cluster (CCSD) method. Journal of Chemical Physics, 1988, 89, 360-366.	3.0	105
382	An efficient reformulation of the closedâ€shell coupled cluster single and double excitation (CCSD) equations. Journal of Chemical Physics, 1988, 89, 7382-7387.	3.0	1,519
383	Variational studies of the importance of triple and quadruple excitations on the barrier height for F+H2→FH+H. Journal of Chemical Physics, 1988, 88, 7024-7026.	3.0	17
384	The closedâ€shell coupled cluster single and double excitation (CCSD) model for the description of electron correlation. A comparison with configuration interaction (CISD) results. Journal of Chemical Physics, 1987, 86, 2881-2890.	3.0	316
385	Spin–spin coupling constants of CO and N2. Journal of Chemical Physics, 1987, 87, 2138-2142.	3.0	82
386	The nuclear quadrupole moment of 14N. A theoretical prediction from full valence shell and full configuration interaction atomic wave functions. Journal of Chemical Physics, 1987, 87, 4020-4024.	3.0	19
387	Analytic evaluation of energy gradients for the single and double excitation coupled cluster (CCSD) wave function: Theory and application. Journal of Chemical Physics, 1987, 87, 5361-5373.	3.0	378
388	Calculation of spectra and spin-spin coupling constants using a coupled-cluster polarization propagator method. International Journal of Quantum Chemistry, 1987, 32, 475-485.	2.0	50
389	Analytic evaluation of energy gradients for the single and double excitation coupled cluster (CCSD) wave function: A comparison with configuration interaction (CCSD,CISDT, andCISDTQ) results for the harmonic vibrational frequencies, infrared intensities, dipole moment, and inversion barrier of ammonia. International lournal of Quantum Chemistry, 1987, 32, 495-501.	2.0	27
390	The optimization of molecular orbitals for coupled cluster wavefunctions. Chemical Physics Letters, 1987, 142, 354-358.	2.6	144
391	Nitrogen quadrupole coupling constants for HCN and H2CN+: Explanation of the absence of fine structure in the microwave spectrum of interstellar H2CN+. Journal of Chemical Physics, 1986, 84, 5711-5714.	3.0	28
392	Accelerating the convergence of the coupled-cluster approach. Chemical Physics Letters, 1986, 130, 236-239.	2.6	143
393	Ab initio calculations of through-space nuclear spin?spin coupling constants with theIPPP method. International Journal of Quantum Chemistry, 1986, 30, 603-612.	2.0	12