Teng Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4614735/publications.pdf

Version: 2024-02-01

54	1,022	19	29
papers	citations	h-index	g-index
54	54	54	1008
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Suppressed Sr segregation and performance of directly assembled La0.6Sr0.4Co0.2Fe0.8O3-δ oxygen electrode on Y2O3-ZrO2 electrolyte of solid oxide electrolysis cells. Journal of Power Sources, 2018, 384, 125-135.	7.8	69
2	Borate Volatility from SOFC Sealing Glasses. Journal of the American Ceramic Society, 2008, 91, 2564-2569.	3.8	64
3	Highly active and stable Er _{0.4} Bi _{1.6} O ₃ decorated La _{0.76} Sr _{0.19} MnO _{3+Î} nanostructured oxygen electrodes for reversible solid oxide cells. Journal of Materials Chemistry A, 2017, 5, 12149-12157.	10.3	63
4	Nb and Pd co-doped La0.57Sr0.38Co0.19Fe0.665Nb0.095Pd0.05O3-δ as a stable, high performance electrode for barrier-layer-free Y2O3-ZrO2 electrolyte of solid oxide fuel cells. Journal of Power Sources, 2018, 378, 433-442.	7.8	48
5	Chromate formation at the interface between a solid oxide fuel cell sealing glass and interconnect alloy. Journal of Power Sources, 2012, 205, 301-306.	7.8	47
6	Nitrogen-Doped Carbon Nanotube-Supported Pd Catalyst for Improved Electrocatalytic Performance toward Ethanol Electrooxidation. Nano-Micro Letters, 2017, 9, 28.	27.0	39
7	Improving the electrocatalytic properties of Pd-based catalyst for direct alcohol fuel cells: effect of solid solution. Scientific Reports, 2017, 7, 4907.	3.3	38
8	Tuning the interfacial reaction between CaO–SrO–Al2O3–B2O3–SiO2 sealing glass–ceramics and Cr-containing interconnect: Crystalline structure vs. glass structure. Journal of the European Ceramic Society, 2014, 34, 1989-1996.	5.7	37
9	New zinc and bismuth doped glass sealants with substantially suppressed boron deposition and poisoning for solid oxide fuel cells. Journal of Materials Chemistry A, 2014, 2, 18655-18665.	10.3	30
10	Tuning the thermal properties of borosilicate glass ceramic seals for solid oxide fuel cells. Journal of the European Ceramic Society, 2012, 32, 4009-4013.	5.7	28
11	Isothermal Crystallization of a Solid Oxide Fuel Cell Sealing Glass by Differential Thermal Analysis. Journal of the American Ceramic Society, 2008, 91, 3235-3239.	3.8	27
12	Efficient CO 2 electrolysis with scandium doped titanate cathode. International Journal of Hydrogen Energy, 2017, 42, 8197-8206.	7.1	27
13	High performance nanostructured bismuth oxide–cobaltite as a durable oxygen electrode for reversible solid oxide cells. Journal of Materials Chemistry A, 2018, 6, 6510-6520.	10.3	26
14	Cellulose/SnS ₂ composite with enhanced visible-light photocatalytic activity prepared by microwave-assisted ionic liquid method. RSC Advances, 2017, 7, 12255-12264.	3.6	25
15	Improving the chemical compatibility of sealing glass for solid oxide fuel cells: Blocking the reactive species by controlled crystallization. Journal of Power Sources, 2012, 216, 1-4.	7.8	24
16	Nanosized HCA-coated borate bioactive glass with improved wound healing effects on rodent model. Chemical Engineering Journal, 2021, 426, 130299.	12.7	24
17	Phase Structure and Microstructure of a Nanoscale TiO2-RuO2-IrO2-Ta2O5Anode Coating on Titanium. Journal of the American Ceramic Society, 2008, 91, 4154-4157.	3.8	23
18	A New Composite Support for Pd Catalysts for Ethylene Glycol Electrooxidation in Alkaline Solution: Effect of (Ru,Sn)O2 solid solution. Electrochimica Acta, 2015, 174, 178-184.	5.2	23

#	Article	IF	CITATIONS
19	Tailoring the sealing properties of TiO2â€"CaOâ€"SrOâ€"B2O3â€"SiO2 glass-ceramic seals: Thermal properties, chemical compatibility and electrical property. Journal of Power Sources, 2013, 241, 578-582.	7.8	21
20	Can crystalline phases be self-healing sealants for solid oxide fuel cells?. Journal of Power Sources, 2011, 196, 1321-1323.	7.8	19
21	Improving the thermal stability of phosphor in a white light-emitting diode (LED) by glass-ceramics: Effect of Al2O3 dopant. Journal of the European Ceramic Society, 2018, 38, 2005-2009.	5.7	18
22	Reduction of chromate formation at the interface of solid oxide fuel cells by different additives. Journal of Power Sources, 2010, 195, 6795-6797.	7.8	16
23	Reducing the reaction between boron-containing sealing glass-ceramics and lanthanum-containing cathode: Effect of Bi2O3. Journal of the European Ceramic Society, 2014, 34, 4463-4468.	5.7	16
24	Development of ceramic sealant for solid oxide fuel cell application: Self-healing property, mechanical stability and thermal stability. Journal of Power Sources, 2012, 204, 122-126.	7.8	15
25	The reactive wetting kinetics of interfacial tension: a reaction-limited model. RSC Advances, 2017, 7, 13003-13009.	3.6	15
26	Effect of Gd2O3 doping on structure and boron volatility of borosilicate glass sealants in solid oxide fuel cells—A study on the La0.6Sr0.4Co0.2Fe0.8O3-Î′ (LSCF) cathode. Journal of Power Sources, 2018, 383, 34-41.	7.8	15
27	Active, durable bismuth oxide-manganite composite oxygen electrodes: Interface formation induced by cathodic polarization. Journal of Power Sources, 2018, 397, 16-24.	7.8	15
28	Controlling the redox reaction at the interface between sealing glasses and Cr-containing interconnect: Effect of competitive reaction. Journal of Power Sources, 2014, 267, 753-759.	7.8	13
29	Ethanol oxidation on Pd/C promoted with CaSiO3 in alkaline medium. Electrochimica Acta, 2015, 158, 18-23.	5.2	13
30	Improving the sealing performance of glass-ceramics for SOFCs applications by a unique  composite' approach: A study on Na2O-SiO2 glass-ceramic system. Journal of the European Ceramic Society, 2018, 38, 4488-4494.	5.7	13
31	Tuning the Interfacial Reaction Between Bismuthâ€Containing Sealing Glasses and Crâ€Containing Interconnect: Effect of ZnO. Journal of the American Ceramic Society, 2015, 98, 3797-3806.	3.8	12
32	Development of the CaO–SrO–ZrO ₂ –B ₂ O ₃ –SiO ₂ sealing glasses for solid oxide fuel cell applications: structure–property correlation. RSC Advances, 2015, 5, 41772-41779.	3.6	12
33	Improving the electrical property of CeO 2 -containing sealing glass–ceramics for Solid Oxide Fuel Cell applications: Effect of HfO 2. Journal of the European Ceramic Society, 2016, 36, 917-923.	5.7	12
34	Reducing the interfacial reaction between borosilicate sealant and yttria-stabilized zirconia electrolyte by addition of HfO2. Journal of the European Ceramic Society, 2015, 35, 2427-2431.	5.7	10
35	Effect of HfO2 on the compatibility of borosilicate sealing glasses for solid oxide fuel cells application. RSC Advances, 2015, 5, 62891-62898.	3.6	10
36	Stable phosphate-based glass for low-temperature sealing applications: Effect of Si3N4 dopant. Ceramics International, 2018, 44, 20227-20231.	4.8	10

#	Article	IF	CITATIONS
37	Synthesis and Characterization of Nanoscale Ce(x)Ru(1?x)O2Coatings With Electrochemical Activity. Journal of the American Ceramic Society, 2007, 90, 989-992.	3.8	9
38	Reducing the reaction between boron-containing sealing glass-ceramics and lanthanum-containing cathode: Effect of La2O3. Journal of the European Ceramic Society, 2016, 36, 1103-1107.	5.7	9
39	Effects of Nb2O5 and Gd2O3 doping on boron volatility and activity between glass seals and lanthanum-containing cathode. Journal of the European Ceramic Society, 2017, 37, 1547-1555.	5.7	9
40	Effect of Nb2O5 doping on improving the thermo-mechanical stability of sealing interfaces for solid oxide fuel cells. Scientific Reports, 2017, 7, 5355.	3.3	9
41	Improving sealing performance of borosilicate glass-ceramics for solid oxide fuel cell applications: Effect of AlN. Journal of the European Ceramic Society, 2019, 39, 4194-4201.	5.7	9
42	Interaction between gadolinia-doped ceria electrolyte and sealing glass–ceramics. Journal of the European Ceramic Society, 2015, 35, 2201-2207.	5.7	8
43	Significant Promotion Effect of Bi2O3on the Activity and Stability of Directly Assembled Lanthanum Manganite Based Cathodes of Solid Oxide Fuel Cells. Journal of the Electrochemical Society, 2017, 164, F1471-F1477.	2.9	7
44	Effect of nickel doping on structure and suppressing boron volatility of borosilicate glass sealants in solid oxide fuel cells. Journal of the European Ceramic Society, 2019, 39, 2179-2185.	5.7	7
45	The phase evolution, electrical stability and chemical compatibility of sealing glass–ceramics for solid oxide fuel cell applications: effect of La ₂ O ₃ or CeO ₂ . RSC Advances, 2016, 6, 17151-17157.	3.6	6
46	Controlling the reaction between boron-containing sealing glass and a lanthanum-containing cathode by adding Nb2O5. Journal of Power Sources, 2016, 325, 549-554.	7.8	6
47	Development of nickel–iron bimetallic catalytic layer for solid oxide fuel cells: Effect of citric acid. International Journal of Hydrogen Energy, 2014, 39, 9467-9472.	7.1	5
48	Structural transformation-induced surface strengthening of borosilicate sealing glass for solid oxide fuel cells. Ceramics International, 2019, 45, 15629-15635.	4.8	4
49	Structure, crystallization, and performances of alkalineâ€earth boroaluminosilicate sealing glasses for SOFCs. Journal of the American Ceramic Society, 2021, 104, 2560-2570.	3.8	4
50	Reactive wetting of Ni–Si alloys on graphite substrates: effects of Si and Ni. RSC Advances, 2015, 5, 90866-90870.	3.6	3
51	A facile self-assembly approach to prepare palladium/carbon nanotubes catalyst for the electro-oxidation of ethanol. Materials Research Express, 2018, 5, 025013.	1.6	3
52	Rigid-resilient transition in calcium borosilicate sealing glass–ceramics: Effect of preferred orientation. Journal of the European Ceramic Society, 2018, 38, 2410-2416.	5.7	3
53	A robust glass-ceramic sealing material for solid oxide fuel cells: Effect of Ba3Nb10O28 phase. Journal of the European Ceramic Society, 2019, 39, 1540-1545.	5.7	3
54	Effect of annealing temperature on the structure and coke-resistance of nickel–iron bimetallic catalytic layer for in situ methane steam reforming in SOFC operation. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2014, 189, 45-50.	3.5	1