Michael J Wilhelm

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4614545/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Direct magnetic resonance detection of myelin and prospects for quantitative imaging of myelin density. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 9605-9610.	7.1	149
2	Gram's Stain Does Not Cross the Bacterial Cytoplasmic Membrane. ACS Chemical Biology, 2015, 10, 1711-1717.	3.4	51
3	Determination of bacterial surface charge density via saturation of adsorbed ions. Biophysical Journal, 2021, 120, 2461-2470.	0.5	44
4	Towards quantification of myelin by solid-state MRI of the lipid matrix protons. NeuroImage, 2017, 163, 358-367.	4.2	40
5	Adsorption and transport of charged vs. neutral hydrophobic molecules at the membrane of murine erythroleukemia (MEL) cells. Colloids and Surfaces B: Biointerfaces, 2015, 127, 122-129.	5.0	39
6	Azithromycin-Induced Changes to Bacterial Membrane Properties Monitored <i>in Vitro</i> by Second-Harmonic Light Scattering. ACS Medicinal Chemistry Letters, 2018, 9, 569-574.	2.8	37
7	Label-Free Optical Method for Quantifying Molecular Transport Across Cellular Membranes In Vitro. Journal of Physical Chemistry Letters, 2016, 7, 3406-3411.	4.6	34
8	Photodissociation of vinyl cyanide at 193 nm: Nascent product distributions of the molecular elimination channels. Journal of Chemical Physics, 2009, 130, 044307.	3.0	33
9	Chemically Induced Changes to Membrane Permeability in Living Cells Probed with Nonlinear Light Scattering. Biochemistry, 2015, 54, 4427-4430.	2.5	33
10	Real-time molecular uptake and membrane-specific transport in living cells by optical microscopy and nonlinear light scattering. Chemical Physics Letters, 2014, 605-606, 158-163.	2.6	30
11	Chemical Activation through Super Energy Transfer Collisions. Journal of the American Chemical Society, 2014, 136, 1682-1685.	13.7	28
12	Spatially Resolved Membrane Transport in a Single Cell Imaged by Second Harmonic Light Scattering. Biochemistry, 2019, 58, 1841-1844.	2.5	27
13	Influence of molecular structure on passive membrane transport: A case study by second harmonic light scattering. Journal of Chemical Physics, 2019, 150, 104705.	3.0	26
14	Vibrational Modes of the Vinyl and Deuterated Vinyl Radicals. Journal of Physical Chemistry A, 2009, 113, 8857-8870.	2.5	23
15	The lowest quartet-state of the ketenyl (HCCO) radical: Collision-induced intersystem crossing and the <mml:math altimg="si8.gif" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>i/i/2</mml:mi>i>induced intersystem crossing and the <mml:math altimg="si8.gif" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>i/i/2</mml:mi>i>induced intersystem crossing and the <mml:mi>i>induced intersystem crossing and statement of the statement of</mml:mi></mml:math></mml:math>	1.9 1ml:mn>2	()
16	The ν1 CH stretching mode of the ketenyl (HCCO) radical. Journal of Chemical Physics, 2008, 128, 064313.	3.0	19
17	Is Photolytic Production a Viable Source of HCN and HNC in Astrophysical Environments? A Laboratory-based Feasibility Study of Methyl Cyanoformate. Astrophysical Journal, 2017, 849, 15.	4.5	18
18	Strong combination-band IR emission from highly vibrationally excited acetylene. Physical Chemistry Chemical Physics, 2010, 12, 2915.	2.8	14

MICHAEL J WILHELM

#	Article	IF	CITATIONS
19	Photolysis (193 nm) of SO ₂ : Nascent Product Energy Distribution Examined through IR Emission. Journal of Physical Chemistry A, 2012, 116, 166-173.	2.5	14
20	Large cross section for super energy transfer from hyperthermal atoms to ambient molecules. Physical Review A, 2016, 93, .	2.5	14
21	Moleculeâ€Membrane Interactions in Biological Cells Studied with Second Harmonic Light Scattering. Chemistry - an Asian Journal, 2020, 15, 200-213.	3.3	14
22	Collisional Energy Transfer from Highly Vibrationally Excited Radicals Is Very Efficient. Journal of Physical Chemistry Letters, 2013, 4, 23-29.	4.6	13
23	Influence of Solvent on Dye‣ensitized Solar Cell Efficiency: What is so Special About Acetonitrile?. Particle and Particle Systems Characterization, 2021, 38, 2000220.	2.3	12
24	Carboxylic Anchoring Dye <i>p</i> -Ethyl Red Does Not Adsorb Directly onto TiO ₂ Particles in Protic Solvents. Journal of Physical Chemistry C, 2019, 123, 8265-8272.	3.1	11
25	Spectral reconstruction analysis for enhancing signal-to-noise in time-resolved spectroscopies. Journal of Chemical Physics, 2015, 143, 124204.	3.0	9
26	Indole Facilitates Antimicrobial Uptake in Bacteria. ACS Infectious Diseases, 2022, 8, 1124-1133.	3.8	9
27	Note: Reconstructing interferograms improves spectral SNR. Journal of Chemical Physics, 2016, 145, 036101.	3.0	6
28	UV Photolysis of Pyrazine and the Production of Hydrogen Isocyanide. Journal of Physical Chemistry A, 2018, 122, 9001-9013.	2.5	6
29	Signal-to-noise enhancement in time-resolved IR emission spectra through two-dimensional correlation analysis. Journal of Molecular Structure, 2008, 883-884, 242-248.	3.6	5
30	Collisional Energy Transfer from Vibrationally Excited Hydrogen Isocyanide. Journal of Physical Chemistry A, 2019, 123, 6927-6936.	2.5	4
31	Ultrathin Films of Pentacene on Ag(111): Charge-Transfer Bonding and Interadsorbate Interactions. Journal of Physical Chemistry C, 2021, 125, 3385-3395.	3.1	3
32	Living E. coli is Permeable to Propidium Iodide: A Study by Time-Resolved Second-Harmonic Scattering and Fluorescence Microscopy. Biophysical Journal, 2015, 108, 148a-149a.	0.5	2
33	Control of Chemical Reactions through Coherent Excitation of Eigenlevels: A Demonstration via Vibronic Coupling in SO2. Journal of Physical Chemistry A, 2021, 125, 9065-9070.	2.5	2
34	Ag nanoplatelets as efficient photosensitizers for TiO2 nanorods. Journal of Chemical Physics, 2022, 156, 024703.	3.0	2
35	Real-Time Observation of Molecular Transport across Biological Membranes with Non-Linear Optical Spectroscopy and Fluorescence Microscopy. Biophysical Journal, 2013, 104, 23a.	0.5	1
36	Cell Membrane Integrity Examined by Nonlinear Light Scattering. Biophysical Journal, 2016, 110, 160a.	0.5	1

MICHAEL J WILHELM

#	Article	IF	CITATIONS
37	Imaging Molecular Transport Through the Membrane of a Living Cell. SSRN Electronic Journal, 0, , .	0.4	1
38	Quantitative Modeling of Electron Dynamics and the Effect of Diffusion in Photosensitized Semiconductor Nanocomposites. Accounts of Chemical Research, 0, , .	15.6	1
39	Enhanced Membrane Permeability in E. coli Induced by Extracellular Adenosine Triphosphate. Biophysical Journal, 2015, 108, 402a.	0.5	0
40	Nonlinear Light Scattering as a Generally Applicable Approach for Studying Molecular Transport across Biological Membranes. Biophysical Journal, 2016, 110, 160a.	0.5	0
41	Real-Time Characterization of an Antimicrobial Mechanism-of-Action with Nonlinear Optical Scattering. Biophysical Journal, 2017, 112, 382a.	0.5	0
42	In Vivo Nonlinear Light Scattering Probe of Drug-Induced Activation of Bacterial Mechanosensitive Channels. Biophysical Journal, 2017, 112, 580a.	0.5	0
43	Nonlinear Light Scattering from Buried Interfaces: Fundamentals and Applications. ACS Symposium Series, 0, , 173-198.	0.5	Ο