Evgeniy Khain

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4613073/publications.pdf Version: 2024-02-01

EVCENIX KHAIN

#	Article	lF	CITATIONS
1	Dynamics and Pattern Formation in Invasive Tumor Growth. Physical Review Letters, 2006, 96, 188103.	7.8	100
2	Generalized Cahn-Hilliard equation for biological applications. Physical Review E, 2008, 77, 051129.	2.1	84
3	A Stochastic Model for Wound Healing. Journal of Statistical Physics, 2006, 122, 909-924.	1.2	60
4	Onset of thermal convection in a horizontal layer of granular gas. Physical Review E, 2003, 67, 021306.	2.1	59
5	Collective behavior of brain tumor cells: The role of hypoxia. Physical Review E, 2011, 83, 031920.	2.1	58
6	The Role of Cell-Cell Adhesion in Wound Healing. Journal of Statistical Physics, 2007, 128, 209-218.	1.2	56
7	Symmetry-breaking instability in a prototypical driven granular gas. Physical Review E, 2002, 66, 021306.	2.1	41
8	Shear-induced crystallization of a dense rapid granular flow: Hydrodynamics beyond the melting point. Physical Review E, 2006, 73, 061301.	2.1	38
9	A model for glioma growth. Complexity, 2005, 11, 53-57.	1.6	35
10	Minimizing the Population Extinction Risk by Migration. Physical Review Letters, 2012, 109, 138104.	7.8	35
11	Phase diagram of van der Waals–like phase separation in a driven granular gas. Physical Review E, 2004, 70, 051310.	2.1	33
12	Migration of adhesive glioma cells: Front propagation and fingering. Physical Review E, 2012, 86, 011904.	2.1	32
13	Modeling chemotaxis of adhesive cells: stochastic lattice approach and continuum description. New Journal of Physics, 2014, 16, 025002.	2.9	26
14	Hydrodynamics of a vibrated granular monolayer. Physical Review E, 2011, 84, 031308.	2.1	14
15	Fast Migration and Emergent Population Dynamics. Physical Review Letters, 2012, 109, 248102.	7.8	13
16	Spontaneous formation of large clusters in a lattice gas above the critical point. Physical Review E, 2014, 90, 062702.	2.1	10
17	Two-level modeling of quarantine. Physical Review E, 2020, 102, 022313.	2.1	9
18	Density-Dependent Regulation of Glioma Cell Proliferation and Invasion Mediated by miR-9. Cancer Microenvironment, 2016, 9, 149-159.	3.1	8

Ενσενιγ Κηαιν

#	Article	IF	CITATIONS
19	Knudsen temperature jump and the Navier-Stokes hydrodynamics of granular gases driven by thermal walls. Physical Review E, 2008, 78, 041303.	2.1	7
20	Velocity fluctuations of noisy reaction fronts propagating into a metastable state. Journal of Physics A: Mathematical and Theoretical, 2013, 46, 125002.	2.1	7
21	Modeling Cell Size Dynamics in a Confined Nonuniform Dense Cell Culture. Journal of Statistical Physics, 2019, 176, 299-311.	1.2	4
22	Dynamics of an Expanding Cell Monolayer. Journal of Statistical Physics, 2021, 184, 1.	1.2	4
23	Effective pressure and cell area distribution in a confined monolayer. Fluid Dynamics Research, 2018, 50, 051413.	1.3	3
24	Path-dependent course of epidemic: Are two phases of quarantine better than one?. Europhysics Letters, 2020, 132, 28003.	2.0	3
25	Velocity fluctuations of stochastic reaction fronts propagating into an unstable state: Strongly pushed fronts. Physical Review E, 2020, 102, 022137.	2.1	2
26	Noise induces rare events in granular media. Physical Review E, 2016, 94, 032905.	2.1	1
27	Thermal conductivity at the high-density limit and the levitating granular cluster. Physical Review E, 2018, 98, 012903.	2.1	1
28	Epidemic on a changing network: College outbreaks and vaccination. International Journal of Modern Physics C, 0, , .	1.7	1
29	Resonant oscillations of a granular cluster. Complexity, 2008, 13, 45-49.	1.6	0