Long Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4612732/publications.pdf

Version: 2024-02-01

		201674	233421
55	2,226	27	45
papers	citations	h-index	g-index
59	59	59	2694
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Fluorescence Quenching by Redox Molecular Pumping. Journal of the American Chemical Society, 2022, 144, 3572-3579.	13.7	17
2	Syntheses of three-dimensional catenanes under kinetic control. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2118573119.	7.1	12
3	Electron-catalysed molecular recognition. Nature, 2022, 603, 265-270.	27.8	51
4	Radical Cyclic [3]Daisy Chains. CheM, 2021, 7, 174-189.	11.7	26
5	Single-Molecule Charge Transport through Positively Charged Electrostatic Anchors. Journal of the American Chemical Society, 2021, 143, 2886-2895.	13.7	43
6	A Donor–Acceptor [2]Catenane for Visible Light Photocatalysis. Journal of the American Chemical Society, 2021, 143, 8000-8010.	13.7	47
7	Electron-Catalyzed Dehydrogenation in a Single-Molecule Junction. Journal of the American Chemical Society, 2021, 143, 8476-8487.	13.7	25
8	A Bifunctional-Modulated Conformal Li/Mn-Rich Layered Cathode for Fast-Charging, High Volumetric Density and Durable Li-lon Full Cells. Nano-Micro Letters, 2021, 13, 118.	27.0	17
9	Coordinationâ€Driven Selective Formation of <i>D</i> ₂ Symmetric Octanuclear Organometallic Cages. Chemistry - A European Journal, 2021, 27, 9524-9528.	3.3	4
10	Selective Separation of Hexachloroplatinate(IV) Dianions Based on Exoâ€Binding with Cucurbit[6]uril. Angewandte Chemie - International Edition, 2021, 60, 17587-17594.	13.8	30
11	Selective Photodimerization in a Cyclodextrin Metal–Organic Framework. Journal of the American Chemical Society, 2021, 143, 9129-9139.	13.7	34
12	Selective Separation of Hexachloroplatinate(IV) Dianions Based on Exoâ€Binding with Cucurbit[6]uril. Angewandte Chemie, 2021, 133, 17728-17735.	2.0	5
13	Radical-pairing-induced molecular assembly and motion. Nature Reviews Chemistry, 2021, 5, 447-465.	30.2	55
14	A contorted nanographene shelter. Nature Communications, 2021, 12, 5191.	12.8	12
15	Promotion and suppression of single-molecule conductance by quantum interference in macrocyclic circuits. Matter, 2021, , .	10.0	12
16	Radically Enhanced Dual Recognition. Angewandte Chemie - International Edition, 2021, 60, 25454-25462.	13.8	10
17	PCage: Fluorescent Molecular Temples for Binding Sugars in Water. Journal of the American Chemical Society, 2021, 143, 15688-15700.	13.7	23
18	Innenr $\tilde{A}^{1}\!\!/\!\!4$ cktitelbild: Radically Enhanced Dual Recognition (Angew. Chem. 48/2021). Angewandte Chemie, 2021, 133, 25787-25787.	2.0	0

#	Article	IF	Citations
19	Tuning radical interactions in trisradical tricationic complexes by varying host-cavity sizes. Chemical Science, 2020, 11, 107-112.	7.4	14
20	Covalent organic framework-based ultrathin crystalline porous film: manipulating uniformity of fluoride distribution for stabilizing lithium metal anode. Journal of Materials Chemistry A, 2020, 8, 3459-3467.	10.3	75
21	Viologen Tweezers to Probe the Force of Individual Donor–Acceptor π-Interactions. Journal of the American Chemical Society, 2020, 142, 21153-21159.	13.7	15
22	Suit[3]ane. Journal of the American Chemical Society, 2020, 142, 20152-20160.	13.7	20
23	Artificial Molecular Pump Operating in Response to Electricity and Light. Journal of the American Chemical Society, 2020, 142, 14443-14449.	13.7	45
24	Ring-in-Ring(s) Complexes Exhibiting Tunable Multicolor Photoluminescence. Journal of the American Chemical Society, 2020, 142, 16849-16860.	13.7	52
25	Two-photon excited deep-red and near-infrared emissive organic co-crystals. Nature Communications, 2020, 11, 4633.	12.8	82
26	Molecular-Pump-Enabled Synthesis of a Daisy Chain Polymer. Journal of the American Chemical Society, 2020, 142, 10308-10313.	13.7	24
27	A precise polyrotaxane synthesizer. Science, 2020, 368, 1247-1253.	12.6	148
28	Enhanced Polysulfide Regulation <i>via</i> Porous Catalytic V ₂ O ₃ /V ₈ C ₇ Heterostructures Derived from Metal–Organic Frameworks toward High-Performance Li–S Batteries. ACS Nano, 2020, 14, 8495-8507.	14.6	192
29	Highly Stable Organic Bisradicals Protected by Mechanical Bonds. Journal of the American Chemical Society, 2020, 142, 7190-7197.	13.7	17
30	Giant Conductance Enhancement of Intramolecular Circuits through Interchannel Gating. Matter, 2020, 2, 378-389.	10.0	43
31	High-Efficiency Gold Recovery Using Cucurbit[6]uril. ACS Applied Materials & Amp; Interfaces, 2020, 12, 38768-38777.	8.0	41
32	Organic Counteranion Co-assembly Strategy for the Formation of \hat{l}^3 -Cyclodextrin-Containing Hybrid Frameworks. Journal of the American Chemical Society, 2020, 142, 2042-2050.	13.7	26
33	A Molecular Dual Pump. Journal of the American Chemical Society, 2019, 141, 17472-17476.	13.7	53
34	Subâ€nanometer, Ultrafine αâ€Fe ₂ O ₃ Sheets Realized by Controlled Crystallization Kinetics for Stable, Highâ€Performance Energy Storage. Chemistry - A European Journal, 2019, 25, 5005-5013.	3.3	10
35	Sandwich, Verticalâ€Channeled Thick Electrodes with High Rate and Cycle Performance. Advanced Functional Materials, 2019, 29, 1809196.	14.9	76
36	Designing vertical channels with expanded interlayers for Li-ion batteries. Chemical Communications, 2019, 55, 4258-4261.	4.1	23

#	Article	IF	Citations
37	ZnFe ₂ O ₄ @Carbon Core–Shell Nanoparticles Encapsulated in Reduced Graphene Oxide for High-Performance Li-Ion Hybrid Supercapacitors. ACS Applied Materials & Samp; Interfaces, 2019, 11, 14713-14721.	8.0	40
38	A Dynamic Tetracationic Macrocycle Exhibiting Photoswitchable Molecular Encapsulation. Journal of the American Chemical Society, 2019, 141, 1280-1289.	13.7	66
39	Electrochemical and Electrostatic Cleavage of Alkoxyamines. Journal of the American Chemical Society, 2018, 140, 766-774.	13.7	129
40	Ultra-high-rate, ultra-long-life asymmetric supercapacitors based on few-crystalline, porous NiCo ₂ O ₄ nanosheet composites. Journal of Materials Chemistry A, 2018, 6, 1412-1422.	10.3	71
41	Li–S Batteries: Nickel–Cobalt Double Hydroxide as a Multifunctional Mediator for Ultrahighâ€Rate and Ultralong‣ife Li–S Batteries (Adv. Energy Mater. 35/2018). Advanced Energy Materials, 2018, 8, 1870152.	19.5	5
42	Nickel–Cobalt Double Hydroxide as a Multifunctional Mediator for Ultrahighâ€Rate and Ultralongâ€Life Li–S Batteries. Advanced Energy Materials, 2018, 8, 1802431.	19.5	76
43	Egg albumen templated graphene foams for high-performance supercapacitor electrodes and electrochemical sensors. Journal of Materials Chemistry A, 2018, 6, 18267-18275.	10.3	21
44	Stacking Interactions Induced Selective Conformation of Discrete Aromatic Arrays and Borromean Rings. Journal of the American Chemical Society, 2017, 139, 1653-1660.	13.7	105
45	Selective B(4)â^'H Activation of an <i>o</i> àâ€Carboranylthioamide Based on a Palladium Precursor. Chemistry - A European Journal, 2017, 23, 1814-1819.	3.3	22
46	Reproducible flaws unveil electrostatic aspects of semiconductor electrochemistry. Nature Communications, 2017, 8, 2066.	12.8	68
47	Mixedâ€Metal Coordination Cages Constructed with Pyridylâ€Functionalized βâ€Diketonate Metalloligands: Syntheses, Structures and Host–Guest Properties. Chemistry - A European Journal, 2015, 21, 14893-14900.	3.3	29
48	Discrete Rectangles, Prisms, and Heterometallic Cages from a Conjugated Cp*Rhâ€Based Building Block. Chemistry - A European Journal, 2015, 21, 16975-16981.	3.3	15
49	Synthesis of a new type of alkene metal complex using face-capping thione-alkene ligands. Dalton Transactions, 2015, 44, 8797-8800.	3.3	14
50	Rational Design of Polynuclear Organometallic Assemblies from a Simple Heteromultifunctional Ligand. Journal of the American Chemical Society, 2015, 137, 13670-13678.	13.7	62
51	Construction of iridium and rhodium cyclometalated macrocycles based on p-carborane and N,N′-donor bridging ligands. Dalton Transactions, 2014, 43, 17200-17208.	3.3	11
52	Isomers of Cyclometalated Macrocycles Constructed through Olefinic C–H Activation. Organometallics, 2014, 33, 587-593.	2.3	15
53	H ₂ -Initiated Reversible Switching between Two-Dimensional Metallacycles and Three-Dimensional Cylinders. Journal of the American Chemical Society, 2014, 136, 14608-14615.	13.7	60
54	Discrepant gas adsorption in isostructural heterometallic coordination polymers: strong dependence of metal identity. CrystEngComm, 2013, 15, 78-85.	2.6	33

#	Article	IF	CITATIONS
55	Radically Enhanced Dual Recognition. Angewandte Chemie, 0, , .	2.0	4