
Zixing Shi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4612491/publications.pdf Version: 2024-02-01

ZIXING SHI

#	Article	IF	CITATIONS
1	Stress Communication between the Chain Movement and the Shape Transformation from 2D to 3D. ACS Applied Materials & Interfaces, 2022, 14, 2082-2091.	8.0	5
2	Integrating Boronic Esters and Anthracene into Covalent Adaptable Networks toward Stimuli-Responsive Elastomers. Polymers, 2022, 14, 1104.	4.5	3
3	Wavelengthâ€Selective Photoâ€Cycloadditions of Styrylâ€Anthracene. Macromolecular Rapid Communications, 2022, 43, e2200055.	3.9	3
4	Rapid Stress Relaxation, Multistimuli-Responsive Elastomer Based on Dual-Dynamic Covalent Bonds and Aniline Trimer. Langmuir, 2022, 38, 4812-4819.	3.5	8
5	The Evolution of Self-Wrinkles in a Single-Layer Gradient Polymer Film Based on Viscoelasticity. Macromolecules, 2022, 55, 3563-3572.	4.8	9
6	Macromolecular Metabolism Based on Enaminoneamide Achieving Transformation of Polymer Architecture. Chemistry of Materials, 2022, 34, 6026-6035.	6.7	3
7	Reversible stimuli-responsive luminescent polymers with adaptable mechanical properties based on europium-malonate complex. Polymer, 2021, 214, 123259.	3.8	6
8	Aminoesterenamide Achieved by Threeâ€Component Reaction Heading toward Tailoring Covalent Adaptable Network with Great Freedom. Macromolecular Rapid Communications, 2021, 42, e2100394.	3.9	3
9	Metal–Organic Frameworks Corset with a Thermosetting Polymer for Improved Molecular-Sieving Property of Mixed-Matrix Membranes. ACS Applied Materials & Interfaces, 2020, 12, 55308-55315.	8.0	19
10	Revisiting Acetoacetyl Chemistry to Build Malleable Cross-Linked Polymer Networks via Transamidation. ACS Macro Letters, 2019, 8, 233-238.	4.8	40
11	Exploring multiple functions of diarylsemipinacol linked to the saturated ethylene–propylene elastomer: from the dynamic covalent networks to tailoring its macroscopic performance. Polymer Chemistry, 2019, 10, 6157-6165.	3.9	9
12	Light-Written Reversible 3D Fluorescence and Topography Dual-Pattern with Memory and Self-Healing Abilities. Research, 2019, 2019, 2389254.	5.7	12
13	Versatile Approach to Building Dynamic Covalent Polymer Networks by Stimulating the Dormant Groups. ACS Macro Letters, 2018, 7, 1371-1375.	4.8	13
14	Shape Reconfiguration of a Biomimetic Elastic Membrane with a Switchable Janus Structure. Advanced Functional Materials, 2018, 28, 1800939.	14.9	42
15	Tailoring vinylogous urethane chemistry for the cross-linked polybutadiene: Wide freedom design, multiple recycling methods, good shape memory behavior. Polymer, 2018, 148, 202-210.	3.8	54
16	Fabrication of Super Extensible and Highly Tough Graphene Composite Hydrogels by Thermal Treatment Strategy for the Mixture of Tannin and Graphene Oxide. Macromolecular Chemistry and Physics, 2017, 218, 1600549.	2.2	6
17	Inspired by elastomers: fabrication of hydrogels with tunable properties and re-shaping ability via photo-crosslinking at a macromolecular level. Polymer Chemistry, 2017, 8, 1824-1832.	3.9	6
18	Gas separation performance of supported carbon molecular sieve membranes based on soluble polybenzimidazole. Journal of Membrane Science, 2017, 533, 1-10.	8.2	41

ZIXING SHI

#	Article	IF	CITATIONS
19	A Facile Method Synthesizing Hydrogel Using Hybranched Polyether Amine (hPEA) as Coinitiator and Crosslinker. Macromolecular Chemistry and Physics, 2017, 218, 1700251.	2.2	7
20	Shape Memory: An Efficient Method to Develop the Latent Photopatterned Morphology for Elastomer in Two/Three Dimension. ACS Macro Letters, 2017, 6, 1025-1030.	4.8	13
21	Dynamically Cross-linked Elastomer Hybrids with Light-Induced Rapid and Efficient Self-Healing Ability and Reprogrammable Shape Memory Behavior. ACS Applied Materials & (Interfaces, 2017, 9, 27213-27222.	8.0	95
22	Polyetheramine (PEA): a versatile platform to tailor the properties of hydrogels via H-bonding interactions. Polymer Chemistry, 2017, 8, 5367-5373.	3.9	5
23	In situ polymerization induced supramolecular hydrogels of chitosan and poly(acrylic) Tj ETQq1 1 0.784314 rgBT	Qverlock	192 ^{Tf 50 58}
24	Selfâ€Assembly of Amphiphilic Anthraceneâ€Functionalized βâ€Cyclodextrin (CDâ€AN) through Multiâ€Micelle Aggregation. Macromolecular Rapid Communications, 2016, 37, 998-1004.	3.9	15
25	Toward Multifunctional Polymer Hybrid through Tunable Charge Transfer Interaction of Anthracene/Naphthalenediimide. Advanced Materials Interfaces, 2016, 3, 1600224.	3.7	6
26	Photoreversible Growth of Micropattern. Advanced Materials Interfaces, 2016, 3, 1600528.	3.7	6
27	Revisiting the pristine carbon nanotubes as dienophile: A promising crosslinking agent to build the inorganic-organic network for polybutadiene based on dynamic crosslinked mode. Polymer, 2016, 98, 229-236.	3.8	6
28	Selective Adsorption and Separation through Molecular Filtration by Hyperbranched Poly(ether) Tj ETQq0 0 0 rgB	T /Overloci 3.5	k 10 Tf 50 3
29	Revisiting the mechanism of redox-polymerization to build the hydrogel with excellent properties using a novel initiator. Soft Matter, 2016, 12, 2575-2582.	2.7	26
30	Dynamic crosslinked poly(styrene-block-butadiene-block-styrene) via Diels–Alder chemistry: an ideal method to improve solvent resistance and mechanical properties without losing its thermal plastic behavior. RSC Advances, 2015, 5, 45376-45383.	3.6	24
31	An Eco-Friendly Scheme for the Cross-Linked Polybutadiene Elastomer via Thiol–Ene and Diels–Alder Click Chemistry. Macromolecules, 2015, 48, 3539-3546.	4.8	165
32	A simple approach to preparation of polyhedral oligomeric silsesquioxane crosslinked poly(styrene-b-butadiene-b-styrene) elastomers with a unique micro-morphology via UV-induced thiol–ene reaction. Polymer Chemistry, 2014, 5, 6761-6769.	3.9	30
33	Novel benzoxazine resins as photoinitiator comprising benzophenone and coinitiator amine for photopolymerization. Journal of Applied Polymer Science, 2013, 128, 1785-1791.	2.6	7
34	Nacre-like graphene paper reinforced by polybenzimidazole. RSC Advances, 2013, 3, 20353.	3.6	18
35	Graphene–aramid nanofiber nanocomposite paper with high mechanical and electrical performance. RSC Advances, 2013, 3, 17664.	3.6	62
36	Strong and conductive polybenzimidazole composites with high graphene contents. RSC Advances, 2013, 3, 12255.	3.6	17

ZIXING SHI

#	Article	IF	CITATIONS
37	Mechanically strong graphene oxide/sodium alginate/polyacrylamide nanocomposite hydrogel with improved dye adsorption capacity. Journal of Materials Chemistry A, 2013, 1, 7433.	10.3	424
38	Functionalization of unzipped carbon nanotube via in situ polymerization for mechanical reinforcement of polymer. Journal of Materials Chemistry, 2012, 22, 17663.	6.7	23
39	Self-assembly of graphene into three-dimensional structures promoted by natural phenolic acids. Journal of Materials Chemistry, 2012, 22, 22459.	6.7	188
40	Gelatin-assisted fabrication of water-dispersible graphene and its inorganic analogues. Journal of Materials Chemistry, 2012, 22, 17619.	6.7	88
41	Gum arabic assisted exfoliation and fabrication of Ag–graphene-based hybrids. Journal of Materials Chemistry, 2012, 22, 13764.	6.7	69
42	Boron nitride nanosheets: large-scale exfoliation in methanesulfonic acid and their composites with polybenzimidazole. Journal of Materials Chemistry, 2011, 21, 11371.	6.7	223
43	Direct exfoliation of graphene in methanesulfonic acid and facile synthesis of graphene/polybenzimidazole nanocomposites. Journal of Materials Chemistry, 2011, 21, 505-512.	6.7	79
44	Multiwalled carbon nantoubesâ€reinforced poly(hydroxyaminoether) prepared by one pot graftâ€from method. Journal of Applied Polymer Science, 2011, 120, 1758-1766.	2.6	4
45	One pot synthesis of multiwalled carbon nanotubes reinforced polybenzimidazole hybrids: Preparation, characterization and properties. Polymer, 2009, 50, 5987-5995.	3.8	36