Victoria E Cachorro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4611199/publications.pdf

Version: 2024-02-01

72 papers

1,760 citations

304743 22 h-index 289244 40 g-index

73 all docs

73 docs citations

times ranked

73

2075 citing authors

#	Article	IF	CITATIONS
1	Assessing vineyard condition with hyperspectral indices: Leaf and canopy reflectance simulation in a row-structured discontinuous canopy. Remote Sensing of Environment, 2005, 99, 271-287.	11.0	589
2	Synergetic monitoring of Saharan dust plumes and potential impact on surface: a case study of dust transport from Canary Islands to Iberian Peninsula. Atmospheric Chemistry and Physics, 2011, 11, 3067-3091.	4.9	83
3	Advanced characterisation of aerosol size properties from measurements of spectral optical depth using the GRASP algorithm. Atmospheric Measurement Techniques, 2017, 10, 3743-3781.	3.1	71
4	Measurements of the atmospheric turbidity of the North-centre continental area in Spain: spectral aerosol optical depth and Ãngström turbidity parameters. Journal of Aerosol Science, 2000, 31, 687-702.	3.8	68
5	Modified Calibration Procedures for a Yankee Environmental System UVB-1 Biometer Based on Spectral Measurements with a Brewer Spectrophotometer. Photochemistry and Photobiology, 2006, 82, 508.	2.5	53
6	Diurnal cycle of precipitable water vapor over Spain. Quarterly Journal of the Royal Meteorological Society, 2011, 137, 948-958.	2.7	43
7	Columnar physical and radiative properties of atmospheric aerosols in north central Spain. Journal of Geophysical Research, 2000, 105, 7161-7175.	3.3	42
8	Intercomparison of aerosol optical depth measurements in the UVB using Brewer Spectrophotometers and a Li-Cor Spectrophotometer. Geophysical Research Letters, 2001, 28, 1691-1694.	4.0	40
9	Comparison of UV irradiances from Aura/Ozone Monitoring Instrument (OMI) with Brewer measurements at El Arenosillo (Spain) – Part 1: Analysis of parameter influence. Atmospheric Chemistry and Physics, 2010, 10, 5979-5989.	4.9	40
10	Column-integrated aerosol microphysical properties from AERONET Sun photometer over southwestern Spain. Atmospheric Chemistry and Physics, 2011, 11, 12535-12547.	4.9	39
11	UV Index Experimental Values During the Years 2000 and 2001 from the Spanish Broadband UV-B Radiometric Network¶. Photochemistry and Photobiology, 2002, 76, 181.	2.5	39
12	Comparison of atmospheric aerosol climatologies over southwestern Spain derived from AERONET and MODIS. Remote Sensing of Environment, 2011, 115, 1272-1284.	11.0	38
13	Solar radiation measurements compared to simulations at the BSRN Izaña station. Mineral dust radiative forcing and efficiency study. Journal of Geophysical Research D: Atmospheres, 2014, 119, 179-194.	3.3	33
14	Determination of the atmospheric-water-vapor content in the 940-nm absorption band by use of moderate spectral-resolution measurements of direct solar irradiance. Applied Optics, 1998, 37, 4678.	2.1	32
15	On the sub-micron aerosol size distribution in a coastal-rural site at El Arenosillo Station (SW –) Tj ETQq1 10.7	7843]4 rg	BTJOverlock
16	The evaluation of the integrated water vapour annual cycle over the Iberian Peninsula from EOSâ€MODIS against different groundâ€based techniques. Quarterly Journal of the Royal Meteorological Society, 2013, 139, 1935-1956.	2.7	31
17	Inventory of African desert dust events in the north-central Iberian Peninsula in 2003–2014 based on sun-photometer–AERONET and particulate-mass–EMEP data. Atmospheric Chemistry and Physics, 2016, 16, 8227-8248.	4.9	31
18	Columnar characteristics of aerosols by spectroradiometer measurements in the maritime area of the Cadiz Gulf (Spain). International Journal of Climatology, 2005, 25, 1781-1804.	3.5	28

#	Article	IF	CITATIONS
19	Comparison of UV irradiances from Aura/Ozone Monitoring Instrument (OMI) with Brewer measurements at El Arenosillo (Spain) – Part 2: Analysis of site aerosol influence. Atmospheric Chemistry and Physics, 2010, 10, 11867-11880.	4.9	28
20	Analysis of the annual cycle of the precipitable water vapour over Spain from 10â€year homogenized series of GPS data. Quarterly Journal of the Royal Meteorological Society, 2014, 140, 397-406.	2.7	25
21	Title is missing!. Journal Physics D: Applied Physics, 1997, 30, 3024-3027.	2.8	24
22	Improvement in PWV estimation from GPS due to the absolute calibration of antenna phase center variations. GPS Solutions, 2010, 14, 389-395.	4.3	24
23	Aerosol optical depth at ALOMAR Observatory (AndÃya, Norway) in summer 2002 and 2003. Tellus, Series B: Chemical and Physical Meteorology, 2006, 58, 218-228.	1.6	22
24	A preliminary assessment of a detailed two stream short-wave narrow-band model using spectral radiation measurements. Solar Energy, 1997, 61, 265-273.	6.1	21
25	Aerosol characterization at the subâ€Arctic site Andenes (69°N, 16°E), by the analysis of columnar optical properties. Quarterly Journal of the Royal Meteorological Society, 2012, 138, 471-482.	2.7	21
26	The Correlation between Particle Mass Loading and Extinction: Application to Desert Dust Aerosol Content Estimation. Remote Sensing of Environment, 1997, 60, 187-194.	11.0	19
27	Intercomparison of Spectroradiometers for Global and Direct Solar Irradiance in the Visible Range. Journal of Atmospheric and Oceanic Technology, 2003, 20, 997-1010.	1.3	19
28	Retrieval of atmospheric aerosol characteristics from visible extinction data at valladolid (spain). Atmospheric Environment, 1994, 28, 963-971.	4.1	18
29	Characterization of a long range transport pollution episode affecting PM in SW Spain. Journal of Environmental Monitoring, 2008, 10, 1158.	2.1	15
30	In situ measurements of aerosol optical properties and number size distributions in a coastal region of Norway during the summer of 2008. Atmospheric Chemistry and Physics, 2012, 12, 5841-5857.	4.9	13
31	Daytime and nighttime aerosol optical depth implementation in CÆLIS. Geoscientific Instrumentation, Methods and Data Systems, 2020, 9, 417-433.	1.6	12
32	Correction of Angular Response Error in Brewer UV Irradiance Measurements. Journal of Atmospheric and Oceanic Technology, 2008, 25, 2018-2027.	1.3	11
33	Detailed Aerosol Optical Depth Intercomparison between Brewer and Li-Cor 1800 Spectroradiometers and a Cimel Sun Photometer. Journal of Atmospheric and Oceanic Technology, 2009, 26, 1558-1571.	1.3	10
34	An integrating sphere spectral system to measure continuous spectra of aerosol absorption coefficient. Journal of Aerosol Science, 2011, 42, 204-212.	3.8	9
35	Comparison of aerosol optical properties at the sub-arctic stations ALOMAR-Andenes, Abisko and SodankylÇn late spring and summer 2007. Atmospheric Research, 2012, 107, 20-30.	4.1	9
36	Column Integrated Water Vapor and Aerosol Load Characterization with the New ZEN-R52 Radiometer. Remote Sensing, 2020, 12, 1424.	4.0	9

3

#	Article	IF	Citations
37	Absorption Ãngström exponents of aerosols and light absorbing carbon (LAC) obtained from in situ data in Covilhã, central Portugal. Journal of Environmental Monitoring, 2012, 14, 3174.	2.1	8
38	Characterization of Stratospheric Smoke Particles over the Antarctica by Remote Sensing Instruments. Remote Sensing, 2020, 12, 3769.	4.0	8
39	Atmospheric effects on the ultraviolet erythemal and total shortwave solar radiation in Valladolid, Spain. Optica Pura Y Aplicada, 2012, 45, 17-21.	0.1	8
40	Simple approaches and inversion methods retrieve particle size parameters of atmospheric desert aerosols. Atmospheric Environment, 1998, 32, 239-245.	4.1	7
41	Retrieval of biophysical vegetation parameters using simultaneous inversion of high resolution remote sensing imagery constrained by a vegetation index. Precision Agriculture, 2013, 14, 541-557.	6.0	7
42	Atmospheric particulate matter levels, chemical composition and optical absorbing properties in CamagÃ $\frac{1}{4}$ ey, Cuba. Environmental Sciences: Processes and Impacts, 2013, 15, 440-453.	3.5	7
43	Analysis of aerosol scattering properties measured by a nephelometer at a coastal-rural site in the Atlantic southwest of the Iberian Peninsula. Journal of Atmospheric and Solar-Terrestrial Physics, 2015, 132, 48-63.	1.6	7
44	Error source in AOD retrieval from filter radiometer data in the UV due to filter band function. Journal of Aerosol Science, 2009, 40, 597-602.	3.8	6
45	Comparison of observed and modeled cloud-free longwave downward radiationÂ(2010–2016) at the high mountain BSRN Izaña station. Geoscientific Model Development, 2018, 11, 2139-2152.	3.6	6
46	Aerosol retrievals from the EKO MS-711 spectral direct irradiance measurements and corrections of the circumsolar radiation. Atmospheric Measurement Techniques, 2020, 13, 2601-2621.	3.1	6
47	The Izaña BSRN station. Optica Pura Y Aplicada, 2012, 45, 51-55.	0.1	6
48	SSolar-GOA v1.0: a simple, fast, and accurate Spectral SOLAR radiative transfer model for clear skies. Geoscientific Model Development, 2022, 15, $1689-1712$.	3.6	5
49	Solar Radiation Climatology in Camagüey, Cuba (1981–2016). Remote Sensing, 2021, 13, 169.	4.0	4
50	Water Vapor Retrievals from Spectral Direct Irradiance Measured with an EKO MS-711 Spectroradiometerâ€"Intercomparison with Other Techniques. Remote Sensing, 2021, 13, 350.	4.0	4
51	Optical calibration facility at the Izaña Atmospheric Research Center. Optica Pura Y Aplicada, 2012, 45, 57-62.	0.1	4
52	An analytical study about the ratio between particle mass loading and extinction: application to desert dust aerosols. Journal of Quantitative Spectroscopy and Radiative Transfer, 1997, 57, 559-568.	2.3	3
53	Comparison of aerosol size distributions measured at ground level and calculated from inversion of solar radiances., 2005, 5979, 204.		3
54	<title>Particle mass loading estimation from extinction data: application to satellite determination $<$ /title>. , 1995, , .		2

#	Article	IF	Citations
55	<title>Comparison of two methods for inferring total columnar ozone amount and aerosol optical depth <math display="inline"></math> /title>. , 1995, , .</td><td></td><td>2</td></tr><tr><td>56</td><td>Characterization of temperature sensitivity of sun photometers by field comparison with a reference instrument. Journal of Aerosol Science, 2013, 59, 1-5.</td><td>3.8</td><td>2</td></tr><tr><td>57</td><td>Comparison between measurements and model simulations of solar radiation at a high altitude site:
Case studies for the Izana BSRN station. , 2013, , .</td><td></td><td>2</td></tr><tr><td>58</td><td>Morphology, Mineralogy, and Chemistry of Atmospheric Aerosols Nearby an Active Mining Area: Aljustrel Mine (SW Portugal). Atmosphere, 2021, 12, 333.</td><td>2.3</td><td>2</td></tr><tr><td>59</td><td>Vertical radiative properties of atmospheric aerosols in a representative continental area of north-central Spain during 1995. , 1998, , .</td><td></td><td>2</td></tr><tr><td>60</td><td>Cloud optical depth measurements with sunphotometer in CamagÃ<math>^1\!\!/\!\!4</math>ey, Cuba. Optica Pura Y Aplicada, 2012, 45, 389-396.</td><td>0.1</td><td>2</td></tr><tr><td>61</td><td>ORION software tool for the geometrical calibration of all-sky cameras. PLoS ONE, 2022, 17, e0265959.</td><td>2.5</td><td>2</td></tr><tr><td>62</td><td>Atmospheric Aerosols and Climate. Advances in Meteorology, 2010, 2010, 1-2.</td><td>1.6</td><td>1</td></tr><tr><td>63</td><td>CÆLIS: a System for Aersol Measurement Network. , 2018, , .</td><td></td><td>1</td></tr><tr><td>64</td><td>Characterizing aerosol optical depth measurements and forecasts of Saharan dust events at CamagÃ<math>^1</math>/4ey, Cuba, during July 2009. Optica Pura Y Aplicada, 2012, 45, 415-421.</td><td>0.1</td><td>1</td></tr><tr><td>65</td><td>Comparison of CIMEL sun-photometer and ground-based GNSS integrated water vapor over south-western European sites. Atmospheric Research, 2022, 275, 106217.</td><td>4.1</td><td>1</td></tr><tr><td>66</td><td>Analysis of the atmospheric water vapor content determination in the 940-nm band using moderate spectral resolution measurements of direct solar irradiance. , 1998, , .</td><td></td><td>0</td></tr><tr><td>67</td><td>Aerosol optical depth derived from lidar measurements during VELETA-2002 campaign. , 2004, 5235, 477.</td><td></td><td>0</td></tr><tr><td>68</td><td>Observation and characterization of aerosols above ALOMAR (69 degrees N) by tropospheric lidar, sun-photometer, and VHF radar., 2006,,.</td><td></td><td>0</td></tr><tr><td>69</td><td>Validation of TOMS UV irradiance with Brewer ground-based measurements at southwestern Spain. , 2006, , .</td><td></td><td>0</td></tr><tr><td>70</td><td>Summer lidar measurements in the troposphere over ALOMAR, Norway in 2007. , 2008, , .</td><td></td><td>0</td></tr><tr><td>71</td><td>Aerosol scattering optical properties by nephelometer measurements at the El Arenosillo site (SW) Tj ETQq1 1 (</td><td>).784314 r</td><td>gBT /Overlock</td></tr><tr><td>72</td><td>Editorial for the Special Issue "Remote Sensing of Atmospheric Components and Water Vapor― Remote Sensing, 2020, 12, 2074.</td><td>4.0</td><td>0</td></tr></tbody></table></title>		