
Iain W Wilson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4610629/publications.pdf Version: 2024-02-01

IAIN WWW.SON

#	Article	IF	CITATIONS
1	Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proceedings of the United States of America, 2000, 97, 11655-11660.	7.1	1,293
2	Expression Profile Analysis of the Low-Oxygen Response in Arabidopsis Root Cultures[W]. Plant Cell, 2002, 14, 2481-2494.	6.6	362
3	Arabidopsis <i>RAP2.2</i> : An Ethylene Response Transcription Factor That Is Important for Hypoxia Survival Â. Plant Physiology, 2010, 153, 757-772.	4.8	293
4	The transcription factor ATAF2 represses the expression of pathogenesis-related genes in Arabidopsis. Plant Journal, 2005, 43, 745-757.	5.7	273
5	Clobal Changes in Gene Expression in Response to High Light in Arabidopsis,. Plant Physiology, 2002, 130, 1109-1120.	4.8	254
6	Development of a 63K SNP Array for Cotton and High-Density Mapping of Intraspecific and Interspecific Populations of <i>Gossypium</i> spp G3: Genes, Genomes, Genetics, 2015, 5, 1187-1209.	1.8	226
7	Gene Expression Profile Changes in Cotton Root and Hypocotyl Tissues in Response to Infection with Fusarium oxysporum f. sp. vasinfectum. Molecular Plant-Microbe Interactions, 2004, 17, 654-667.	2.6	184
8	Hypoxia-responsive microRNAs and trans-acting small interfering RNAs in Arabidopsis. Journal of Experimental Botany, 2010, 61, 165-177.	4.8	184
9	Global Gene Expression Responses to Waterlogging in Roots and Leaves of Cotton (Gossypium) Tj ETQq1 1 0.78	4314 rgBT 3.1	/Qyerlock 1(
10	miR482 Regulation of NBS-LRR Defense Genes during Fungal Pathogen Infection in Cotton. PLoS ONE, 2013, 8, e84390.	2.5	163
11	Systemic Gene Expression in Arabidopsis during an Incompatible Interaction with Alternaria brassicicola Â. Plant Physiology, 2003, 132, 999-1010.	4.8	160
12	An efficient approach to finding Siraitia grosvenorii triterpene biosynthetic genes by RNA-seq and digital gene expression analysis. BMC Genomics, 2011, 12, 343.	2.8	151
13	The Arabidopsis <i>AMP1</i> Gene Encodes a Putative Glutamate Carboxypeptidase. Plant Cell, 2001, 13, 2115-2125.	6.6	146
14	The Low-Oxygen-Induced NAC Domain Transcription Factor <i>ANAC102</i> Affects Viability of Arabidopsis Seeds following Low-Oxygen Treatment Â. Plant Physiology, 2009, 149, 1724-1738.	4.8	141
15	Genome sequencing and analysis of the paclitaxel-producing endophytic fungus Penicillium aurantiogriseum NRRL 62431. BMC Genomics, 2014, 15, 69.	2.8	125
16	Spatial and temporal analysis of the local response to wounding. Plant Molecular Biology, 2004, 55, 165-181.	3.9	120
17	High throughput sequencing technology reveals that the taxoid elicitor methyl jasmonate regulates microRNA expression in Chinese yew (Taxus chinensis). Gene, 2009, 436, 37-44.	2.2	112
10	Marphine-pathway block in top 1 poppies Nature 2004 431 413-414	97.9	108

18 Morphine-pathway block in top1 poppies. Nature, 2004, 431, 413-414.

27.8 108

#	Article	IF	CITATIONS
19	The Arabidopsis AMP1 Gene Encodes a Putative Glutamate Carboxypeptidase. Plant Cell, 2001, 13, 2115-2125.	6.6	98
20	Comparison of Erysiphe cichoracearum and E. cruciferarum and a Survey of 360 Arabidopsis thaliana Accessions for Resistance to These Two Powdery Mildew Pathogens. Molecular Plant-Microbe Interactions, 1999, 12, 1031-1043.	2.6	87
21	Gene expression in <i>Eucalyptus </i> branch wood with marked variation in cellulose microfibril orientation and lacking Gâ€kayers. New Phytologist, 2008, 179, 94-103.	7.3	84
22	New normalization methods for cDNA microarray data. Bioinformatics, 2003, 19, 1325-1332.	4.1	80
23	ATAF NAC transcription factors: Regulators of plant stress signaling. Plant Signaling and Behavior, 2010, 5, 428-432.	2.4	80
24	De novo transcriptome sequencing and digital gene expression analysis predict biosynthetic pathway of rhynchophylline and isorhynchophylline from Uncaria rhynchophylla, a non-model plant with potent anti-alzheimer's properties. BMC Genomics, 2014, 15, 676.	2.8	74
25	The shoot and root growth of Brachypodium and its potential as a model for wheat and other cereal crops. Functional Plant Biology, 2009, 36, 960.	2.1	72
26	Deep Sequencing Reveals Transcriptome Re-Programming of Taxus × media Cells to the Elicitation with Methyl Jasmonate. PLoS ONE, 2013, 8, e62865.	2.5	71
27	Mutations affecting translational coupling between the rep genes of an IncB miniplasmid. Journal of Bacteriology, 1992, 174, 2376-2383.	2.2	70
28	<i>VERNALIZATION INSENSITIVE 3</i> (<i>VIN3</i>) is required for the response of <i>Arabidopsis thaliana</i> seedlings exposed to low oxygen conditions. Plant Journal, 2009, 59, 576-587.	5.7	59
29	Diversity analysis of cotton (Gossypium hirsutum L.) germplasm using the CottonSNP63K Array. BMC Plant Biology, 2017, 17, 37.	3.6	56
30	Genetic and DNA Methylation Changes in Cotton (Gossypium) Genotypes and Tissues. PLoS ONE, 2014, 9, e86049.	2.5	56
31	Signalling pathways: A common theme in plants and animals?. Current Biology, 1997, 7, R175-R178.	3.9	49
32	Enhancing Integrated Pest Management in GM Cotton Systems Using Host Plant Resistance. Frontiers in Plant Science, 2016, 7, 500.	3.6	49
33	Comparisons of early transcriptome responses to low-oxygen environments in three dicotyledonous plant species. Plant Signaling and Behavior, 2010, 5, 1006-1009.	2.4	47
34	Genomewide analysis of the lateral organ boundaries domain gene family in <i>Eucalyptus grandis</i> reveals members that differentially impact secondary growth. Plant Biotechnology Journal, 2018, 16, 124-136.	8.3	44
35	Integrated mapping and characterization of the gene underlying the okra leaf trait in <i>Gossypium hirsutum</i> L. Journal of Experimental Botany, 2016, 67, 763-774.	4.8	43
36	Genome-wide identification and characterization of the SPL gene family in Ziziphus jujuba. Gene, 2017, 627, 315-321.	2.2	43

#	Article	IF	CITATIONS
37	Genome-wide association study of yield components and fibre quality traits in a cotton germplasm diversity panel. Euphytica, 2017, 213, 1.	1.2	42
38	Mutations affecting pseudoknot control of the replication of B group plasmids. Journal of Bacteriology, 1993, 175, 6476-6483.	2.2	39
39	Fusarium wilt (Fusarium oxysporum f. sp. vasinfectum) genes expressed during infection of cotton (Gossypium hirsutum)+. Molecular Plant Pathology, 2006, 7, 87-101.	4.2	39
40	Identification of novel and conserved microRNAs in Panax notoginseng roots by high-throughput sequencing. BMC Genomics, 2015, 16, 835.	2.8	38
41	DNA microarrays: new tools in the analysis of plant defence responses. Molecular Plant Pathology, 2001, 2, 177-185.	4.2	35
42	Microarray Analysis Reveals Vegetative Molecular Phenotypes of Arabidopsis Flowering-time Mutants. Plant and Cell Physiology, 2005, 46, 1190-1201.	3.1	35
43	Genetic dissection of the fuzzless seed trait in Gossypium barbadense. Journal of Experimental Botany, 2018, 69, 997-1009.	4.8	34
44	Molecular analysis of RNAI control of repB translation in IncB plasmids. Journal of Bacteriology, 1994, 176, 6497-6508.	2.2	30
45	Historical Datasets Support Genomic Selection Models for the Prediction of Cotton Fiber Quality Phenotypes Across Multiple Environments. G3: Genes, Genomes, Genetics, 2018, 8, 1721-1732.	1.8	30
46	Polygenic powdery mildew disease resistance inArabidopsis thaliana: quantitative trait analysis of the accession Warschau-1. Plant Pathology, 2001, 50, 690-701.	2.4	26
47	Molecular mapping of a new source of Fusarium wilt resistance in tetraploid cotton (Gossypium) Tj ETQq1 1 0.7	84314 rgBT 2.1	- /Overlock 1
48	Understanding the molecular events underpinning cultivar differences in the physiological performance and heat tolerance of cotton (Gossypium hirsutum). Functional Plant Biology, 2014, 41, 56.	2.1	24
49	Transcriptome and Complexity-Reduced, DNA-Based Identification of Intraspecies Single-Nucleotide Polymorphisms in the Polyploid <i>Gossypium hirsutum</i> L. G3: Genes, Genomes, Genetics, 2014, 4, 1893-1905.	1.8	22
50	Molecular cloning and characterization of a cytochrome P450 taxoid 9á-hydroxylase in Ginkgo biloba cells. Biochemical and Biophysical Research Communications, 2014, 443, 938-943.	2.1	22
51	Importance of structural differences between complementary RNA molecules to control of replication of an IncB plasmid. Journal of Bacteriology, 1997, 179, 742-753.	2.2	20
52	Jasmonic acid is associated with resistance to twospotted spider mites in diploid cotton (Gossypium) Tj ETQq0 C) 0 <u>rg</u> BT /Ov 2:1	verlock 10 Tf
53	Genetic Identification and Transcriptome Analysis of Lintless and Fuzzless Traits in Gossypium arboreum L. International Journal of Molecular Sciences, 2020, 21, 1675.	4.1	19

⁵⁴ Molecular mapping of bunchy top disease resistance in Gossypium hirsutum L. Euphytica, 2016, 210, 1.2 17 135-142.

#	Article	IF	CITATIONS
55	Transcriptomic Analysis of Betula halophila in Response to Salt Stress. International Journal of Molecular Sciences, 2018, 19, 3412.	4.1	17
56	A comparative metabolomics analysis of the components of heartwood and sapwood in Taxus chinensis (Pilger) Rehd Scientific Reports, 2019, 9, 17647.	3.3	15
57	Expansion of <i>MIR482/2118</i> by a classâ€l transposable element in cotton. Plant Journal, 2020, 103, 2084-2099.	5.7	15
58	The Research Progress of Taxol in Taxus. Current Pharmaceutical Biotechnology, 2021, 22, 360-366.	1.6	15
59	Developing controlled environment screening for high-temperature tolerance in cotton that accurately reflects performance in the field. Functional Plant Biology, 2012, 39, 670.	2.1	14
60	Baseline Survey of Root-Associated Microbes of Taxus chinensis (Pilger) Rehd. PLoS ONE, 2015, 10, e0123026.	2.5	14
61	Identification of the Genes Involved in Anthocyanin Biosynthesis and Accumulation in Taxus chinensis. Genes, 2019, 10, 982.	2.4	14
62	CRISPR/Cas9â€mediated saturated mutagenesis of the cotton <i>MIR482</i> family for dissecting the functionality of individual members in disease response. Plant Direct, 2022, 6, .	1.9	14
63	The hunt for hypoxia responsive natural antisense short interfering RNAs. Plant Signaling and Behavior, 2010, 5, 247-251.	2.4	11
64	Co-regulation of catechins biosynthesis responses to temperature changes by shoot growth and catechin related gene expression in tea plants (<i>Camellia sinensis</i> L.). Journal of Horticultural Science and Biotechnology, 2021, 96, 228-238.	1.9	11
65	Whole transcriptome analysis of three leaf stages in two cultivars and one of their F1 hybrid of Camellia sinensis L. with differing EGCG content. Tree Genetics and Genomes, 2017, 13, 1.	1.6	10
66	Plant functional genomics: opportunities in microarray databases and data mining. Functional Plant Biology, 2004, 31, 295.	2.1	9
67	Characterization and Genetic Mapping of Black Root Rot Resistance in Gossypium arboreum L International Journal of Molecular Sciences, 2021, 22, 2642.	4.1	9
68	The R2R3-MYB transcription factor family in <i>Taxus chinensis</i> : identification, characterization, expression profiling and posttranscriptional regulation analysis. PeerJ, 2020, 8, e8473.	2.0	8
69	Australian Cotton Germplasm Resources. , 0, , .		7
70	Genetic mapping and transcriptomic characterization of a new fuzzless-tufted cottonseed mutant. G3: Genes, Genomes, Genetics, 2021, 11, 1-14.	1.8	7
71	Mapping-by-sequencing enabled fast forward genetics in crops with complex genomes CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 0, , 1-12.	1.0	5
72	Genome-wide identification and characterization of the homeodomain-leucine zipper I family of genes in cotton (Gossypium spp.). Plant Gene, 2016, 7, 50-61.	2.3	4

#	Article	IF	CITATIONS
73	Genome-Wide Identification of m6A Writers, Erasers and Readers in Poplar 84K. Genes, 2022, 13, 1018.	2.4	4
74	A comparative analysis of differential N6-methyladenosine (m6A) modification between non-transgenic and LBD15 overexpressing Poplar 84ÂK plants. Tree Genetics and Genomes, 2021, 17, 1.	1.6	3
75	Genomic prediction of cotton fibre quality and yield traits using Bayesian regression methods. Heredity, 2022, 129, 103-112.	2.6	3
76	The Arabidopsis AMP1 Gene Encodes a Putative Glutamate Carboxypeptidase. Plant Cell, 2001, 13, 2115.	6.6	2