
H Susana Marinho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4609928/publications.pdf Version: 2024-02-01

Η SUSANA ΜΑΡΙΝΗΟ

#	Article	IF	CITATIONS
1	Antagonist G-targeted liposomes for improved delivery of anticancer drugs in small cell lung carcinoma. International Journal of Pharmaceutics, 2022, 612, 121380.	5.2	8
2	Quercetin Liposomal Nanoformulation for Ischemia and Reperfusion Injury Treatment. Pharmaceutics, 2022, 14, 104.	4.5	15
3	Sphingolipid-Enriched Domains in Yeast: Biophysical Properties and Antifungal Interaction. Biophysical Journal, 2021, 120, 45a.	0.5	0
4	Liquid-Ordered Phase Formation by Mammalian and Yeast Sterols: A Common Feature With Organizational Differences. Frontiers in Cell and Developmental Biology, 2020, 8, 337.	3.7	20
5	Yeast Sphingolipid-Enriched Domains and Membrane Compartments in the Absence of Mannosyldiinositolphosphorylceramide. Biomolecules, 2020, 10, 871.	4.0	9
6	Regulation of the inositol transporter Itr1p by hydrogen peroxide in Saccharomyces cerevisiae. Archives of Microbiology, 2019, 201, 123-134.	2.2	3
7	Sphingolipid hydroxylation in mammals, yeast and plants – An integrated view. Progress in Lipid Research, 2018, 71, 18-42.	11.6	45
8	Gene Silencing using siRNA for Preventing Liver Ischaemia-Reperfusion Injury. Current Pharmaceutical Design, 2018, 24, 2692-2700.	1.9	5
9	Therapeutic activity of superoxide dismutase-containing enzymosomes on rat liver ischaemia-reperfusion injury followed by magnetic resonance microscopy. European Journal of Pharmaceutical Sciences, 2017, 109, 464-471.	4.0	16
10	Reorganization of plasma membrane lipid domains during conidial germination. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2017, 1862, 156-166.	2.4	12
11	Current aspects of breast cancer therapy and diagnosis based on a nanocarrier approach. , 2017, , 749-774.		7
12	Noncoding RNAs as Critical Players in Regulatory Accuracy, Redox Signaling, and Immune Cell Functions. , 2017, , 215-284.		0
13	Opi1p translocation to the nucleus is regulated by hydrogen peroxide inSaccharomyces cerevisiae. Yeast, 2017, 34, 383-395.	1.7	1
14	Metabolism of Superoxide Radicals and Hydrogen Peroxide in Mitochondria. Oxidative Stress and Disease, 2015, , 3-28.	0.3	0
15	Formation and Properties of Membrane-Ordered Domains by Phytoceramide: Role of Sphingoid Base Hydroxylation. Langmuir, 2015, 31, 9410-9421.	3.5	20
16	Superoxide Dismutase Enzymosomes: Carrier Capacity Optimization, in Vivo Behaviour and Therapeutic Activity. Pharmaceutical Research, 2015, 32, 91-102.	3.5	31
17	Cellular polarity in aging: role of redox regulation and nutrition. Genes and Nutrition, 2014, 9, 371.	2.5	17
18	New long circulating magnetoliposomes as contrast agents for detection of ischemia–reperfusion injuries by MRI. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, 207-214.	3.3	22

H Susana Marinho

#	Article	IF	CITATIONS
19	Hydrogen peroxide sensing, signaling and regulation of transcription factors. Redox Biology, 2014, 2, 535-562.	9.0	688
20	Activation of Nrf2 by H2O2. Methods in Enzymology, 2013, 528, 157-171.	1.0	50
21	H2O2 in the Induction of NF-κB-Dependent Selective Gene Expression. Methods in Enzymology, 2013, 528, 173-188.	1.0	11
22	H2O2 Delivery to Cells. Methods in Enzymology, 2013, 526, 159-173.	1.0	35
23	The Cellular Steady-State of H2O2. Methods in Enzymology, 2013, 527, 3-19.	1.0	26
24	A quantitative study of the cell-type specific modulation of c-Rel by hydrogen peroxide and TNF-α. Redox Biology, 2013, 1, 347-352.	9.0	12
25	Sterol Properties Required for Microdomain Formation: From Model Systems to Living Yeast and Mammalian Cells. Biophysical Journal, 2012, 102, 298a.	0.5	0
26	Sphingolipid-Enriched Microdomains in the Plasma Membrane of Saccharomyces Cerevisiae: Ergosterol-Free «Lipid Rafts» in the Gel Phase. Biophysical Journal, 2012, 102, 27a.	0.5	0
27	The plasma membrane-enriched fraction proteome response during adaptation to hydrogen peroxide in <i>Saccharomyces cerevisiae</i> . Free Radical Research, 2012, 46, 1267-1279.	3.3	9
28	Biophysical properties of ergosterol-enriched lipid rafts in yeast and tools for their study: characterization of ergosterol/phosphatidylcholine membranes with three fluorescent membrane probes. Chemistry and Physics of Lipids, 2012, 165, 577-588.	3.2	26
29	Biphasic modulation of fatty acid synthase by hydrogen peroxide in Saccharomyces cerevisiae. Archives of Biochemistry and Biophysics, 2011, 515, 107-111.	3.0	11
30	Gel Domains in the Plasma Membrane of Saccharomyces cerevisiae. Journal of Biological Chemistry, 2011, 286, 5043-5054.	3.4	94
31	Glyceraldehyde-3-phosphate dehydrogenase is largely unresponsive to low regulatory levels of hydrogen peroxide in Saccharomyces cerevisiae. BMC Biochemistry, 2010, 11, 49.	4.4	18
32	Modulation of plasma membrane lipid profile and microdomains by H2O2 in Saccharomyces cerevisiae. Free Radical Biology and Medicine, 2009, 46, 289-298.	2.9	49
33	Modulation of NF-κB–Dependent Gene Expression by H ₂ O ₂ : A Major Role for a Simple Chemical Process in a Complex Biological Response. Antioxidants and Redox Signaling, 2009, 11, 2043-2053.	5.4	26
34	Role of Hydrogen Peroxide in NF-κB Activation: From Inducer to Modulator. Antioxidants and Redox Signaling, 2009, 11, 2223-2243.	5.4	208
35	H2O2 induces rapid biophysical and permeability changes in the plasma membrane of Saccharomyces cerevisiae. Biochimica Et Biophysica Acta - Biomembranes, 2008, 1778, 1141-1147.	2.6	68
36	A Quantitative Study of NF-κB Activation by H2O2: Relevance in Inflammation and Synergy with TNF-α. Journal of Immunology, 2007, 178, 3893-3902.	0.8	114

H Susana Marinho

#	Article	IF	CITATIONS
37	Down-regulation of fatty acid synthase increases the resistance of Saccharomyces cerevisiae cells to H2O2. Free Radical Biology and Medicine, 2007, 43, 1458-1465.	2.9	28
38	Decrease of H2O2 Plasma Membrane Permeability during Adaptation to H2O2 in Saccharomyces cerevisiae. Journal of Biological Chemistry, 2004, 279, 6501-6506.	3.4	139
39	Decreased cellular permeability to H2O2protectsSaccharomyces cerevisiaecells in stationary phase against oxidative stress. FEBS Letters, 2004, 578, 152-156.	2.8	101
40	Regulation of antioxidant enzymes gene expression in the yeast Saccharomyces cerevisiae during stationary phase. Free Radical Biology and Medicine, 2003, 34, 385-393.	2.9	75
41	Diagnosis of enzyme inhibition based on the degree of inhibition. Biochimica Et Biophysica Acta - General Subjects, 2003, 1624, 11-20.	2.4	13
42	Glutathione Conjugation of 4-Hydroxy-trans-2,3-nonenal in the Rat in Vivo, the Isolated Perfused Liver and Erythrocytes. Toxicology and Applied Pharmacology, 1999, 159, 214-223.	2.8	49
43	Glutathione metabolism in hepatomous liver of rats treated with diethylnitrosamine. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 1997, 1360, 157-168.	3.8	13
44	Role of Glutathione Peroxidase and Phospholipid Hydroperoxide Glutathione Peroxidase in the Reduction of Lysophospholipid Hydroperoxides. Free Radical Biology and Medicine, 1997, 22, 871-883.	2.9	51
45	Lipid peroxidation in mitochondrial inner membranes. I. An integrative kinetic model. Free Radical Biology and Medicine, 1996, 21, 917-943.	2.9	128