Carsten N Boehler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/460992/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A consensus guide to capturing the ability to inhibit actions and impulsive behaviors in the stop-signal task. ELife, 2019, 8, .	6.0	479
2	The influence of reward associations on conflict processing in the Stroop task. Cognition, 2010, 117, 341-347.	2.2	241
3	Direct neurophysiological evidence for spatial suppression surrounding the focus of attention in vision. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 1053-1058.	7.1	210
4	Pinning down response inhibition in the brain — Conjunction analyses of the Stop-signal task. NeuroImage, 2010, 52, 1621-1632.	4.2	189
5	The Involvement of the Dopaminergic Midbrain and Cortico-Striatal-Thalamic Circuits in the Integration of Reward Prospect and Attentional Task Demands. Cerebral Cortex, 2012, 22, 607-615.	2.9	172
6	Overlapping Neural Systems Represent Cognitive Effort and Reward Anticipation. PLoS ONE, 2014, 9, e91008.	2.5	145
7	Sound-Induced Enhancement of Low-Intensity Vision: Multisensory Influences on Human Sensory-Specific Cortices and Thalamic Bodies Relate to Perceptual Enhancement of Visual Detection Sensitivity. Journal of Neuroscience, 2010, 30, 13609-13623.	3.6	136
8	Rapid recurrent processing gates awareness in primary visual cortex. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 8742-8747.	7.1	133
9	The Neural Underpinnings of How Reward Associations Can Both Guide and Misguide Attention. Journal of Neuroscience, 2011, 31, 9752-9759.	3.6	124
10	The heterogeneous world of congruency sequence effects: an update. Frontiers in Psychology, 2014, 5, 1001.	2.1	122
11	The Neural Site of Attention Matches the Spatial Scale of Perception. Journal of Neuroscience, 2006, 26, 3532-3540.	3.6	116
12	Mesolimbic interaction of emotional valence and reward improves memory formation. Neuropsychologia, 2008, 46, 1000-1008.	1.6	113
13	Response inhibition and its relation to multidimensional impulsivity. Neurolmage, 2014, 103, 241-248.	4.2	103
14	Task preparation processes related to reward prediction precede those related to task-difficulty expectation. Neurolmage, 2014, 84, 639-647.	4.2	95
15	Reward prospect rapidly speeds up response inhibition via reactive control. Cognitive, Affective and Behavioral Neuroscience, 2014, 14, 593-609.	2.0	86
16	The Role of the Striatum in Effort-Based Decision-Making in the Absence of Reward. Journal of Neuroscience, 2014, 34, 2148-2154.	3.6	80
17	The Congruency Sequence Effect 3.0: A Critical Test of Conflict Adaptation. PLoS ONE, 2014, 9, e110462.	2.5	76
18	Task-Load-Dependent Activation of Dopaminergic Midbrain Areas in the Absence of Reward. Journal of Neuroscience, 2011, 31, 4955-4961.	3.6	75

2

#	Article	IF	CITATIONS
19	Sensory MEG Responses Predict Successful and Failed Inhibition in a Stop-Signal Task. Cerebral Cortex, 2009, 19, 134-145.	2.9	73
20	Neural Conflict-Control Mechanisms Improve Memory for Target Stimuli. Cerebral Cortex, 2015, 25, 833-843.	2.9	69
21	The Center-Surround Profile of the Focus of Attention Arises from Recurrent Processing in Visual Cortex. Cerebral Cortex, 2009, 19, 982-991.	2.9	66
22	Reward Associations Reduce Behavioral Interference by Changing the Temporal Dynamics of Conflict Processing. PLoS ONE, 2013, 8, e53894.	2.5	65
23	Motivating inhibition – reward prospect speeds up response cancellation. Cognition, 2012, 125, 498-503.	2.2	56
24	Electrophysiological evidence for the involvement of proactive and reactive control in a rewarded stop-signal task. Neurolmage, 2015, 121, 115-125.	4.2	46
25	Neural Mechanisms of Surround Attenuation and Distractor Competition in Visual Search. Journal of Neuroscience, 2011, 31, 5213-5224.	3.6	45
26	Occipital alpha power reveals fast attentional inhibition of incongruent distractors. Psychophysiology, 2018, 55, e13011.	2.4	44
27	High-Field fMRI Reveals Brain Activation Patterns Underlying Saccade Execution in the Human Superior Colliculus. PLoS ONE, 2010, 5, e8691.	2.5	41
28	The role of the pulvinar in distractor processing and visual search. Human Brain Mapping, 2013, 34, 1115-1132.	3.6	41
29	Modulation of locus coeruleus activity by novel oddball stimuli. Brain Imaging and Behavior, 2018, 12, 577-584.	2.1	41
30	Picture novelty attenuates semantic interference and modulates concomitant neural activity in the anterior cingulate cortex and the locus coeruleus. NeuroImage, 2013, 74, 179-187.	4.2	39
31	Cortical and Subcortical Coordination of Visual Spatial Attention Revealed by Simultaneous EEG–fMRI Recording. Journal of Neuroscience, 2017, 37, 7803-7810.	3.6	39
32	Mandatory Processing of Irrelevant Fearful Face Features in Visual Search. Journal of Cognitive Neuroscience, 2010, 22, 2926-2938.	2.3	38
33	Differential Functional Roles of Slow-Wave and Oscillatory-Alpha Activity in Visual Sensory Cortex during Anticipatory Visual–Spatial Attention. Cerebral Cortex, 2011, 21, 2204-2216.	2.9	38
34	The Role of Stimulus Salience and Attentional Capture Across the Neural Hierarchy in a Stop-Signal Task. PLoS ONE, 2011, 6, e26386.	2.5	37
35	The influence of different Stop-signal response time estimation procedures on behavior–behavior and brain–behavior correlations. Behavioural Brain Research, 2012, 229, 123-130.	2.2	36
36	Pupil size directly modulates the feedforward response in human primary visual cortex independently of attention. NeuroImage, 2016, 127, 67-73.	4.2	35

#	Article	IF	CITATIONS
37	Rapid Modulation of Sensory Processing Induced by Stimulus Conflict. Journal of Cognitive Neuroscience, 2011, 23, 2620-2628.	2.3	34
38	Neural correlates of exemplar novelty processing under different spatial attention conditions. Human Brain Mapping, 2009, 30, 3759-3771.	3.6	33
39	Neural processing of reward magnitude under varying attentional demands. Brain Research, 2011, 1383, 218-229.	2.2	33
40	The Dynamics of Proactive and Reactive Cognitive Control Processes in the Human Brain. Journal of Cognitive Neuroscience, 2014, 26, 1021-1038.	2.3	33
41	The spatial profile of the focus of attention in visual search: Insights from MEG recordings. Vision Research, 2010, 50, 1312-1320.	1.4	32
42	The effect of vagus nerve stimulation on response inhibition. Epilepsy and Behavior, 2016, 64, 171-179.	1.7	32
43	Substantia Nigra Activity Level Predicts Trial-to-Trial Adjustments in Cognitive Control. Journal of Cognitive Neuroscience, 2011, 23, 362-373.	2.3	31
44	Strategic Allocation of Attention Reduces Temporally Predictable Stimulus Conflict. Journal of Cognitive Neuroscience, 2012, 24, 1834-1848.	2.3	26
45	Reward- and Attention-related Biasing of Sensory Selection in Visual Cortex. Journal of Cognitive Neuroscience, 2014, 26, 1049-1065.	2.3	25
46	Object-based Selection of Irrelevant Features Is Not Confined to the Attended Object. Journal of Cognitive Neuroscience, 2011, 23, 2231-2239.	2.3	24
47	Binding 3-D Object Perception in the Human Visual Cortex. Journal of Cognitive Neuroscience, 2008, 20, 553-562.	2.3	23
48	The modulatory impact of reward and attention on global feature selection in human visual cortex. Visual Cognition, 2015, 23, 229-248.	1.6	23
49	Strategic downâ€regulation of attentional resources as a mechanism of proactive response inhibition. European Journal of Neuroscience, 2016, 44, 2095-2103.	2.6	23
50	Differential effects of sustained and transient effort triggered by reward – A combined EEG and pupillometry study. Neuropsychologia, 2019, 123, 116-130.	1.6	23
51	Neural mechanisms of spatial- and feature-based attention: A quantitative analysis. Brain Research, 2007, 1181, 51-60.	2.2	21
52	Separable Mechanisms Underlying Global Feature-Based Attention. Journal of Neuroscience, 2012, 32, 15284-15295.	3.6	20
53	Signed Reward Prediction Errors in the Ventral Striatum Drive Episodic Memory. Journal of Neuroscience, 2021, 41, 1716-1726.	3.6	20
54	Determinants of Global Color-Based Selection in Human Visual Cortex. Cerebral Cortex, 2015, 25, 2828-2841.	2.9	19

#	Article	IF	CITATIONS
55	Smiling faces and cash bonuses: Exploring common affective coding across positive and negative emotional and motivational stimuli using fMRI. Cognitive, Affective and Behavioral Neuroscience, 2018, 18, 550-563.	2.0	19
56	Interactions between incentive valence and action information in a cued approach–avoidance task. Psychological Research, 2019, 83, 13-25.	1.7	19
57	Featureâ€based attention modulates directionâ€selective hemodynamic activity within human MT. Human Brain Mapping, 2011, 32, 2183-2192.	3.6	18
58	The Saccadic Re-Centering Bias is Associated with Activity Changes in the Human Superior Colliculus. Frontiers in Human Neuroscience, 2010, 4, 193.	2.0	17
59	Distinct Representations of Attentional Control During Voluntary and Stimulus-Driven Shifts Across Objects and Locations. Cerebral Cortex, 2013, 23, 1351-1361.	2.9	16
60	Electrophysiological recordings in humans reveal reduced location-specific attentional-shift activity prior to recentering saccades. Journal of Neurophysiology, 2012, 107, 1393-1402.	1.8	15
61	Motivational context for response inhibition influences proactive involvement of attention. Scientific Reports, 2016, 6, 35122.	3.3	15
62	Neural correlates of reward-related response tendencies in an equiprobable Go/NoGo task. Cognitive, Affective and Behavioral Neuroscience, 2019, 19, 555-567.	2.0	15
63	Neural Dynamics of Reward-Induced Response Activation and Inhibition. Cerebral Cortex, 2019, 29, 3961-3976.	2.9	14
64	Are losses more effective than rewards in improving performance in a cognitive task?. Motivation Science, 2019, 5, 257-268.	1.6	14
65	Preparing for (valenced) action: The role of differential effort in the orthogonalized go/noâ€go task. Psychophysiology, 2016, 53, 186-197.	2.4	12
66	Comparing the motivational value of rewards and losses in an EEGâ€pupillometry study. European Journal of Neuroscience, 2021, 53, 1822-1838.	2.6	12
67	Winning smiles: Signalling reward by overlapping and non-overlapping emotional valence differentially affects performance and neural activity. Neuropsychologia, 2019, 122, 28-37.	1.6	11
68	On perceived synchrony—neural dynamics of audiovisual illusions and suppressions. Brain Research, 2008, 1220, 132-141.	2.2	10
69	Spatiotemporal Dynamics of Feature-Based Attention Spread: Evidence from Combined Electroencephalographic and Magnetoencephalographic Recordings. Journal of Neuroscience, 2012, 32, 9671-9676.	3.6	10
70	Reward anticipation changes corticospinal excitability during task preparation depending on response requirements and time pressure. Cortex, 2019, 120, 159-168.	2.4	9
71	Are all behavioral reward benefits created equally? An EEG-fMRI study. NeuroImage, 2020, 215, 116829.	4.2	9
72	Dynamic causal interactions between occipital and parietal cortex explain how endogenous spatial attention and stimulus-driven salience jointly shape the distribution of processing priorities in 2D visual space. NeuroImage, 2022, 255, 119206.	4.2	9

#	Article	IF	CITATIONS
73	An EEG study of the combined effects of topâ€down and bottomâ€up attentional selection under varying task difficulty. Psychophysiology, 2022, 59, e14002.	2.4	8
74	Theta and alpha power across fast and slow timescales in cognitive control. European Journal of Neuroscience, 2021, 54, 4581-4594.	2.6	6
75	The role of temporal predictability for early attentional adjustments after conflict. PLoS ONE, 2017, 12, e0175694.	2.5	6
76	Dissociating Reward- and Attention-driven Biasing of Global Feature-based Selection in Human Visual Cortex. Journal of Cognitive Neuroscience, 2019, 31, 469-481.	2.3	5
77	Biasing Actions by Incentive Valence in an Approach/Avoidance Task. Collabra: Psychology, 2019, 5, .	1.8	5
78	Reward does not modulate corticospinal excitability in anticipation of a Stroop trial. European Journal of Neuroscience, 2021, 53, 1019-1028.	2.6	4
79	Neural underpinnings of valence-action interactions triggered by cues and targets in a rewarded approach/avoidance task. Cortex, 2021, 141, 240-261.	2.4	3
80	Guiding spatial attention by multimodal reward cues. Attention, Perception, and Psychophysics, 2021, 84, 655.	1.3	3
81	State regulation in adults scoring high versus low on ADHD symptomatology: A pupillometry study Neuropsychology, 2021, 35, 486-497.	1.3	2
82	Attentional Selection for Locations, Features, and Objects in Vision. , 2012, , 2-29.		1
83	Profiling the Spatial Focus of Visual Attention. , 2014, , 3-15.		0