
## Zong Sheng Guo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4609797/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                              | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Intrapleural interleukin-2–expressing oncolytic virotherapy enhances acute antitumor effects and<br>T-cell receptor diversity in malignant pleural disease. Journal of Thoracic and Cardiovascular<br>Surgery, 2022, 163, e313-e328. | 0.8  | 13        |
| 2  | Immunogenic cell deathâ€inducing small molecule inhibitors: Potential for immunotherapy of cancer.<br>Clinical and Translational Discovery, 2022, 2, .                                                                               | 0.5  | 1         |
| 3  | Ferroptosis Inducer Improves the Efficacy of Oncolytic Virus-Mediated Cancer Immunotherapy.<br>Biomedicines, 2022, 10, 1425.                                                                                                         | 3.2  | 11        |
| 4  | Oncolytic virus promotes tumor-reactive infiltrating lymphocytes for adoptive cell therapy. Cancer<br>Gene Therapy, 2021, 28, 98-111.                                                                                                | 4.6  | 30        |
| 5  | In Vivo Priming of Peritoneal Tumor-Reactive Lymphocytes With a Potent Oncolytic Virus for Adoptive<br>Cell Therapy. Frontiers in Immunology, 2021, 12, 610042.                                                                      | 4.8  | 6         |
| 6  | IL-36Î <sup>3</sup> -armed oncolytic virus exerts superior efficacy through induction of potent adaptive antitumor<br>immunity. Cancer Immunology, Immunotherapy, 2021, 70, 2467-2481.                                               | 4.2  | 13        |
| 7  | Fighting Fire With Fire: Oncolytic Virotherapy for Thoracic Malignancies. Annals of Surgical Oncology, 2021, 28, 2715-2727.                                                                                                          | 1.5  | 11        |
| 8  | Oncolytic Virus Immunotherapy: Showcasing Impressive Progress in Special Issue II. Biomedicines, 2021,<br>9, 663.                                                                                                                    | 3.2  | 4         |
| 9  | PDLIM2: Signaling pathways and functions in cancer suppression and host immunity. Biochimica Et<br>Biophysica Acta: Reviews on Cancer, 2021, 1876, 188630.                                                                           | 7.4  | 13        |
| 10 | Intratumoral expression of interleukin 23 variants using oncolytic vaccinia virus elicit potent<br>antitumor effects on multiple tumor models via tumor microenvironment modulation. Theranostics,<br>2021, 11, 6668-6681.           | 10.0 | 22        |
| 11 | Epigenetic modulation of antitumor immunity for improved cancer immunotherapy. Molecular Cancer, 2021, 20, 171.                                                                                                                      | 19.2 | 106       |
| 12 | Bi- and Tri-Specific T Cell Engager-Armed Oncolytic Viruses: Next-Generation Cancer Immunotherapy.<br>Biomedicines, 2020, 8, 204.                                                                                                    | 3.2  | 41        |
| 13 | Oncolytic immunotherapy for metastatic cancer: lessons and future strategies. Annals of Translational Medicine, 2020, 8, 1113-1113.                                                                                                  | 1.7  | 3         |
| 14 | In Situ Therapeutic Cancer Vaccination with an Oncolytic Virus Expressing Membrane-Tethered IL-2.<br>Molecular Therapy - Oncolytics, 2020, 17, 350-360.                                                                              | 4.4  | 23        |
| 15 | Dual but not single PD-1 or TIM-3 blockade enhances oncolytic virotherapy in refractory lung cancer. ,<br>2020, 8, e000294.                                                                                                          |      | 37        |
| 16 | Synergistic Combination of Oncolytic Virotherapy and Immunotherapy for Glioma. Clinical Cancer<br>Research, 2020, 26, 2216-2230.                                                                                                     | 7.0  | 39        |
| 17 | Oncolytic vaccinia virus delivering tethered IL-12 enhances antitumor effects with improved safety. ,<br>2020, 8, e000710.                                                                                                           |      | 43        |
| 18 | Abstract 912: Synergistic combination of oncolytic virotherapy and immunotherapy for glioma. , 2020,                                                                                                                                 |      | 0         |

2

| #  | Article                                                                                                                                                                                                            | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | <p>A cautionary note on the selectivity of oncolytic poxviruses</p> . Oncolytic Virotherapy,<br>2019, Volume 8, 3-8.                                                                                               | 6.0  | 14        |
| 20 | Vaccinia virus-mediated cancer immunotherapy: cancer vaccines and oncolytics. , 2019, 7, 6.                                                                                                                        |      | 190       |
| 21 | Abstract 2264: Synergistic combination of oncolytic virotherapy and immunotherapy for glioma. , 2019, , .                                                                                                          |      | 0         |
| 22 | Abstract 2264: Synergistic combination of oncolytic virotherapy and immunotherapy for glioma. , 2019, , .                                                                                                          |      | 0         |
| 23 | Modifying the cancer-immune set point using vaccinia virus expressing re-designed interleukin-2.<br>Nature Communications, 2018, 9, 4682.                                                                          | 12.8 | 59        |
| 24 | The 2018 Nobel Prize in medicine goes to cancer immunotherapy. BMC Cancer, 2018, 18, 1086.                                                                                                                         | 2.6  | 54        |
| 25 | Superagonist IL-15-Armed Oncolytic Virus Elicits Potent Antitumor Immunity and Therapy That Are<br>Enhanced with PD-1 Blockade. Molecular Therapy, 2018, 26, 2476-2486.                                            | 8.2  | 107       |
| 26 | PARK7 modulates autophagic proteolysis through binding to the N-terminally arginylated form of the molecular chaperone HSPA5. Autophagy, 2018, 14, 1870-1885.                                                      | 9.1  | 23        |
| 27 | Rational combination of oncolytic vaccinia virus and PD-L1 blockade works synergistically to enhance therapeutic efficacy. Nature Communications, 2017, 8, 14754.                                                  | 12.8 | 268       |
| 28 | Rapid Generation of Multiple Loci-Engineered Marker-free Poxvirus and Characterization of a<br>Clinical-Grade Oncolytic Vaccinia Virus. Molecular Therapy - Methods and Clinical Development, 2017,<br>7, 112-122. | 4.1  | 10        |
| 29 | The Antitumor Effects of Vaccine-Activated CD8+ T Cells Associate with Weak TCR Signaling and Induction of Stem-Like Memory T Cells. Cancer Immunology Research, 2017, 5, 908-919.                                 | 3.4  | 25        |
| 30 | Editorial of the Special Issue: Oncolytic Viruses as a Novel Form of Immunotherapy for Cancer.<br>Biomedicines, 2017, 5, 52.                                                                                       | 3.2  | 5         |
| 31 | Oncolytic Immunotherapy: Conceptual Evolution, Current Strategies, and Future Perspectives.<br>Frontiers in Immunology, 2017, 8, 555.                                                                              | 4.8  | 76        |
| 32 | Targeting G-protein coupled receptor-related signaling pathway in a murine xenograft model of appendiceal pseudomyxoma peritonei. Oncotarget, 2017, 8, 106888-106900.                                              | 1.8  | 19        |
| 33 | Phase 1 Study of Intravenous Oncolytic Poxvirus (vvDD) in Patients With Advanced Solid Cancers.<br>Molecular Therapy, 2016, 24, 1492-1501.                                                                         | 8.2  | 110       |
| 34 | TRAILâ€Induced Caspase Activation Is a Prerequisite for Activation of the Endoplasmic Reticulum<br>Stressâ€Induced Signal Transduction Pathways. Journal of Cellular Biochemistry, 2016, 117, 1078-1091.           | 2.6  | 11        |
| 35 | CXCL11-Armed oncolytic poxvirus elicits potent antitumor immunity and shows enhanced therapeutic efficacy. Oncolmmunology, 2016, 5, e1091554.                                                                      | 4.6  | 83        |
| 36 | Targeting hypoxia-mediated mucin 2 production as a therapeutic strategy for mucinous tumors.<br>Translational Research, 2016, 169, 19-30.e1.                                                                       | 5.0  | 25        |

| #  | Article                                                                                                                                                                                                      | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Complement Inhibition: A Novel Form of Immunotherapy for Colon Cancer. Annals of Surgical<br>Oncology, 2016, 23, 655-662.                                                                                    | 1.5  | 27        |
| 38 | Modulation of chemokines in the tumor microenvironment enhances oncolytic virotherapy for colorectal cancer. Oncotarget, 2016, 7, 22174-22185.                                                               | 1.8  | 37        |
| 39 | Oncolysis by paramyxoviruses: multiple mechanisms contribute to therapeutic efficiency. Molecular<br>Therapy - Oncolytics, 2015, 2, 15011.                                                                   | 4.4  | 42        |
| 40 | Oncolysis by paramyxoviruses: preclinical and clinical studies. Molecular Therapy - Oncolytics, 2015, 2, 15017.                                                                                              | 4.4  | 33        |
| 41 | Mitogen-activated protein kinase inhibition reduces mucin 2 production and mucinous tumor growth.<br>Translational Research, 2015, 166, 344-354.                                                             | 5.0  | 27        |
| 42 | First-in-man Study of Western Reserve Strain Oncolytic Vaccinia Virus: Safety, Systemic Spread, and<br>Antitumor Activity. Molecular Therapy, 2015, 23, 202-214.                                             | 8.2  | 117       |
| 43 | Consensus guidelines for the detection of immunogenic cell death. Oncolmmunology, 2014, 3, e955691.                                                                                                          | 4.6  | 686       |
| 44 | Oncolytic Immunotherapy: Dying the Right Way is a Key to Eliciting Potent Antitumor Immunity.<br>Frontiers in Oncology, 2014, 4, 74.                                                                         | 2.8  | 216       |
| 45 | Oncolytic viruses as platform for multimodal cancer therapeutics: a promising land. Cancer Gene<br>Therapy, 2014, 21, 261-263.                                                                               | 4.6  | 22        |
| 46 | Epitope-optimized alpha-fetoprotein genetic vaccines prevent carcinogen-induced murine autochthonous hepatocellular carcinoma. Hepatology, 2014, 59, 1448-1458.                                              | 7.3  | 37        |
| 47 | T-cell Engager-armed Oncolytic Vaccinia Virus Significantly Enhances Antitumor Therapy. Molecular<br>Therapy, 2014, 22, 102-111.                                                                             | 8.2  | 140       |
| 48 | Oncolytic viruses as therapeutic cancer vaccines. Molecular Cancer, 2013, 12, 103.                                                                                                                           | 19.2 | 252       |
| 49 | A Rationally Designed A34R Mutant Oncolytic Poxvirus: Improved Efficacy in Peritoneal<br>Carcinomatosis. Molecular Therapy, 2013, 21, 1024-1033.                                                             | 8.2  | 25        |
| 50 | Inhibitors of C5 complement enhance vaccinia virus oncolysis. Cancer Gene Therapy, 2013, 20, 342-350.                                                                                                        | 4.6  | 24        |
| 51 | Local Administration of TLR Ligands Rescues the Function of Tumor-Infiltrating CD8 T Cells and<br>Enhances the Antitumor Effect of Lentivector Immunization. Journal of Immunology, 2013, 190,<br>5866-5873. | 0.8  | 24        |
| 52 | miR-574-5p negatively regulates <i>Qki6/7</i> to impact <i>β-catenin</i> /Wnt signalling and the development of colorectal cancer. Gut, 2013, 62, 716-726.                                                   | 12.1 | 112       |
| 53 | Life after death: targeting high mobility group box $1$ in emergent cancer therapies. American Journal of Cancer Research, 2013, 3, 1-20.                                                                    | 1.4  | 50        |
| 54 | Oncolytic Virus and Anti–4-1BB Combination Therapy Elicits Strong Antitumor Immunity against<br>Established Cancer. Cancer Research, 2012, 72, 1651-1660.                                                    | 0.9  | 94        |

| #  | Article                                                                                                                                                                                                 | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Oncolytic poxvirus armed with Fas ligand leads to induction of cellular Fas receptor and selective viral replication in FasR-negative cancer. Cancer Gene Therapy, 2012, 19, 192-201.                   | 4.6  | 8         |
| 56 | Mucin as a therapeutic target in pseudomyxoma peritonei. Journal of Surgical Oncology, 2012, 106, 911-917.                                                                                              | 1.7  | 31        |
| 57 | Chronic Anti-inflammatory Drug Therapy Inhibits Gel-Forming Mucin Production in a Murine<br>Xenograft Model of Human Pseudomyxoma Peritonei. Annals of Surgical Oncology, 2012, 19, 1402-1409.          | 1.5  | 26        |
| 58 | Abstract 5253: MEK-ERK pathway inhibition reduces mucin production in a murine xenograft model of pseudomyxoma peritonei. , 2012, , .                                                                   |      | 0         |
| 59 | Abstract 1544: Combined oncolytic virotherapy and immunotherapy for malignant mesothelioma. , 2012, , .                                                                                                 |      | 0         |
| 60 | Homeobox gene Rhox5 is regulated by epigenetic mechanisms in cancer and stem cells and promotes cancer growth. Molecular Cancer, 2011, 10, 63.                                                          | 19.2 | 13        |
| 61 | CXCL11 improves safety of oncolytic vaccinia virus therapy. Journal of the American College of Surgeons, 2011, 213, S138.                                                                               | 0.5  | 0         |
| 62 | Aldo-keto reductase-7A protects liver cells and tissues from acetaminophen-induced oxidative stress and hepatotoxicity. Hepatology, 2011, 54, 1322-1332.                                                | 7.3  | 47        |
| 63 | Chemokine Expression From Oncolytic Vaccinia Virus Enhances Vaccine Therapies of Cancer.<br>Molecular Therapy, 2011, 19, 650-657.                                                                       | 8.2  | 119       |
| 64 | Lentivector Prime and Vaccinia Virus Vector Boost Generate High-Quality CD8 Memory T Cells and<br>Prevent Autochthonous Mouse Melanoma. Journal of Immunology, 2011, 187, 1788-1796.                    | 0.8  | 16        |
| 65 | The combination of immunosuppression and carrier cells significantly enhances the efficacy of oncolytic poxvirus in the pre-immunized host. Gene Therapy, 2010, 17, 1465-1475.                          | 4.5  | 46        |
| 66 | TRAIL gene-armed oncolytic poxvirus and oxaliplatin can work synergistically against colorectal cancer. Gene Therapy, 2010, 17, 550-559.                                                                | 4.5  | 32        |
| 67 | Epigenetic drugs for cancer treatment and prevention: mechanisms of action. Biomolecular Concepts, 2010, 1, 239-251.                                                                                    | 2.2  | 15        |
| 68 | Three Epigenetic Drugs Up-Regulate Homeobox GeneRhox5in Cancer Cells through Overlapping and<br>Distinct Molecular Mechanisms. Molecular Pharmacology, 2009, 76, 1072-1081.                             | 2.3  | 35        |
| 69 | JNK-deficiency enhanced oncolytic vaccinia virus replication and blocked activation of<br>double-stranded RNA-dependent protein kinase. Cancer Gene Therapy, 2008, 15, 616-624.                         | 4.6  | 21        |
| 70 | Oncolytic virotherapy for ovarian carcinomatosis using a replication-selective vaccinia virus armed with a yeast cytosine deaminase gene. Cancer Gene Therapy, 2008, 15, 115-125.                       | 4.6  | 65        |
| 71 | Oncolytic virotherapy: Molecular targets in tumor-selective replication and carrier cell-mediated delivery of oncolytic viruses. Biochimica Et Biophysica Acta: Reviews on Cancer, 2008, 1785, 217-231. | 7.4  | 111       |
| 72 | Quercetin augments TRAIL-induced apoptotic death: Involvement of the ERK signal transduction pathway. Biochemical Pharmacology, 2008, 75, 1946-1958.                                                    | 4.4  | 156       |

| #  | Article                                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Gene transfer: the challenge of regulated gene expression. Trends in Molecular Medicine, 2008, 14, 410-418.                                                                                                                                               | 6.7 | 55        |
| 74 | Aldose Reductase Regulates Hepatic Peroxisome Proliferator-activated Receptor α Phosphorylation and Activity to Impact Lipid Homeostasis. Journal of Biological Chemistry, 2008, 283, 17175-17183.                                                        | 3.4 | 46        |
| 75 | Redirecting adaptive immunity against foreign antigens to tumors for cancer therapy. Cancer Biology and Therapy, 2007, 6, 1773-1779.                                                                                                                      | 3.4 | 19        |
| 76 | 5-AZA-2′-Deoxycytidine in Cancer Immunotherapy: A Mouse to Man Story. Cancer Research, 2007, 67, 2901-2901.                                                                                                                                               | 0.9 | 0         |
| 77 | A new recombinant vaccinia with targeted deletion of three viral genes: its safety and efficacy as an oncolytic virus. Gene Therapy, 2007, 14, 638-647.                                                                                                   | 4.5 | 25        |
| 78 | De novo Induction of a Cancer/Testis Antigen by 5-Aza-2′-Deoxycytidine Augments Adoptive<br>Immunotherapy in a Murine Tumor Model. Cancer Research, 2006, 66, 1105-1113.                                                                                  | 0.9 | 133       |
| 79 | High Mobility Group B1 Protein Suppresses the Human Plasmacytoid Dendritic Cell Response to TLR9<br>Agonists. Journal of Immunology, 2006, 177, 8701-8707.                                                                                                | 0.8 | 59        |
| 80 | Intravenous and Isolated Limb Perfusion Delivery of Wild Type and a Tumor-Selective Replicating<br>Mutant Vaccinia Virus in Nonhuman Primates. Human Gene Therapy, 2006, 17, 31-45.                                                                       | 2.7 | 33        |
| 81 | 772. Inhibition of Ovarian Tumor Growth Following Treatment with an Oncolytic Vaccinia Virus.<br>Molecular Therapy, 2006, 13, S298-S299.                                                                                                                  | 8.2 | Ο         |
| 82 | Sequential 5-Aza 2′-deoxycytidine/depsipeptide FK228 treatment induces tissue factor pathway inhibitor<br>2 (TFPI-2) expression in cancer cells. Oncogene, 2005, 24, 2386-2397.                                                                           | 5.9 | 44        |
| 83 | The Enhanced Tumor Selectivity of an Oncolytic Vaccinia Lacking the Host Range and Antiapoptosis<br>Genes SPI-1 and SPI-2. Cancer Research, 2005, 65, 9991-9998.                                                                                          | 0.9 | 111       |
| 84 | Vaccinia as a vector for gene delivery. Expert Opinion on Biological Therapy, 2004, 4, 901-917.                                                                                                                                                           | 3.1 | 60        |
| 85 | DNA Methylation May Restrict but Does Not Determine Differential Gene Expression at the Sgy/Tead2<br>Locus during Mouse Development. Molecular and Cellular Biology, 2004, 24, 1968-1982.                                                                 | 2.3 | 42        |
| 86 | An optimal therapeutic expression level is crucial for suicide gene therapy for hepatic metastatic cancer in mice. Hepatology, 2003, 37, 155-163.                                                                                                         | 7.3 | 34        |
| 87 | Modulation of p53, ErbB1, ErbB2, and Raf-1 Expression in Lung Cancer Cells by Depsipeptide FR901228.<br>Journal of the National Cancer Institute, 2002, 94, 504-513.                                                                                      | 6.3 | 330       |
| 88 | Tumor-specific transcriptional targeting of suicide gene therapy. Gene Therapy, 2002, 9, 168-175.                                                                                                                                                         | 4.5 | 121       |
| 89 | Induction of MAGE-3 expression in lung and esophageal cancer cells. Annals of Thoracic Surgery, 2001, 71, 295-302.                                                                                                                                        | 1.3 | 76        |
| 90 | Sequential 5-Aza-2'-deoxycytidine-Depsipeptide FR901228 Treatment Induces Apoptosis Preferentially in<br>Cancer Cells and Facilitates Their Recognition by Cytolytic T Lymphocytes Specific for NY-ESO-1.<br>Journal of Immunotherapy, 2001, 24, 151-161. | 2.4 | 162       |

| #  | Article                                                                                                                                                      | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91 | Augmenting Transgene Expression from Carcinoembryonic Antigen (CEA) Promoter via a GAL4 Gene<br>Regulatory System. Molecular Therapy, 2001, 3, 278-283.      | 8.2  | 44        |
| 92 | The neuronal repressor REST/NRSF is an essential regulator in medulloblastoma cells. Nature<br>Medicine, 2000, 6, 826-831.                                   | 30.7 | 165       |
| 93 | Specific transcription factors stimulate simian virus 40 and polyomavirus origins of DNA replication<br>Molecular and Cellular Biology, 1992, 12, 2514-2524. | 2.3  | 131       |
| 94 | T-antigen binding to site I facilities initiation of SV40 DNA replication but does not affect bidirectionality. Nucleic Acids Research, 1991, 19, 7081-7088. | 14.5 | 16        |
| 95 | Is c-myc protein directly involved in DNA replication?. Science, 1988, 240, 1202-1203.                                                                       | 12.6 | 27        |
| 96 | Initiation of simian virus 40 DNA replicationin vitro:identification of RNA-Primed nascent DNA chains.<br>Nucleic Acids Research, 1987, 15, 7877-7888.       | 14.5 | 14        |
| 97 | The impact of hypoxia on oncolytic virotherapy. Virus Adaptation and Treatment, 0, , 71.                                                                     | 1.5  | 6         |