Xavier Fernà ndez-Busquets

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4608819/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Femtoliter Injection of ESCRT-III Proteins into Adhered Giant Unilamellar Vesicles. Bio-protocol, 2022, 12, e4328.	0.4	0
2	Liposomal Formulations to Improve Antioxidant Power of Myrtle Berry Extract for Potential Skin Application. Pharmaceutics, 2022, 14, 910.	4.5	6
3	Characterization of Domiphen Bromide as a New Fast-Acting Antiplasmodial Agent Inhibiting the Apicoplastidic Methyl Erythritol Phosphate Pathway. Pharmaceutics, 2022, 14, 1320.	4.5	4
4	Resveratrol and artemisinin eudragit-coated liposomes: A strategy to tackle intestinal tumors. International Journal of Pharmaceutics, 2021, 592, 120083.	5.2	20
5	4,9â€Ðiaminoacridines and 4â€Aminoacridines as Dualâ€Stage Antiplasmodial Hits. ChemMedChem, 2021, 16, 788-792.	3.2	6
6	Loading of Beclomethasone in Liposomes and Hyalurosomes Improved with Mucin as Effective Approach to Counteract the Oxidative Stress Generated by Cigarette Smoke Extract. Nanomaterials, 2021, 11, 850.	4.1	7
7	Zwitterionic self-assembled nanoparticles as carriers for Plasmodium targeting in malaria oral treatment. Journal of Controlled Release, 2021, 331, 364-375.	9.9	20
8	The ESCRT-III machinery participates in the production of extracellular vesicles and protein export during Plasmodium falciparum infection. PLoS Pathogens, 2021, 17, e1009455.	4.7	27
9	Detection of Plasmodium falciparum malaria in 1Âh using a simplified enzyme-linked immunosorbent assay. Analytica Chimica Acta, 2021, 1152, 338254.	5.4	7
10	In memory of Max Burger. Journal of Cellular Biochemistry, 2021, 122, 1259-1261.	2.6	0
11	Efficacy of a resveratrol nanoformulation based on a commercially available liposomal platform. International Journal of Pharmaceutics, 2021, 608, 121086.	5.2	8
12	Review of the Current Landscape of the Potential of Nanotechnology for Future Malaria Diagnosis, Treatment, and Vaccination Strategies. Pharmaceutics, 2021, 13, 2189.	4.5	4
13	Electrochemical POC device for fast malaria quantitative diagnosis in whole blood by using magnetic beads, Poly-HRP and microfluidic paper electrodes. Biosensors and Bioelectronics, 2020, 150, 111925.	10.1	52
14	Heparin Administered to Anopheles in Membrane Feeding Assays Blocks Plasmodium Development in the Mosquito. Biomolecules, 2020, 10, 1136.	4.0	6
15	Repurposing Heparin as Antimalarial: Evaluation of Multiple Modifications Toward In Vivo Application. Pharmaceutics, 2020, 12, 825.	4.5	8
16	Promising nanomaterials in the fight against malaria. Journal of Materials Chemistry B, 2020, 8, 9428-9448.	5.8	37
17	Detection of Protein Aggregation in Live <i>Plasmodium</i> Parasites. Antimicrobial Agents and Chemotherapy, 2020, 64,	3.2	6
18	Advanced strategy to exploit wine-making waste by manufacturing antioxidant and prebiotic fibre-enriched vesicles for intestinal health. Colloids and Surfaces B: Biointerfaces, 2020, 193, 111146.	5.0	14

#	Article	IF	CITATIONS
19	Adhesion of freshwater sponge cells mediated by carbohydrate–carbohydrate interactions requires low environmental calcium. Glycobiology, 2020, 30, 710-721.	2.5	4
20	Extracellular vesicles derived from Plasmodium-infected and non-infected red blood cells as targeted drug delivery vehicles. International Journal of Pharmaceutics, 2020, 587, 119627.	5.2	26
21	Development of DNA Aptamers Against <i>Plasmodium falciparum</i> Blood Stages Using Cell-Systematic Evolution of Ligands by EXponential Enrichment. Journal of Biomedical Nanotechnology, 2020, 16, 315-334.	1.1	6
22	Human Albumin Impairs Amyloid β-peptide Fibrillation Through its C-terminus: From docking Modeling to Protection Against Neurotoxicity in Alzheimer's disease. Computational and Structural Biotechnology Journal, 2019, 17, 963-971.	4.1	19
23	An ImmunoPEGliposome for Targeted Antimalarial Combination Therapy at the Nanoscale. Pharmaceutics, 2019, 11, 341.	4.5	26
24	Modeling the Distribution of Diprotic Basic Drugs in Liposomal Systems: Perspectives on Malaria Nanotherapy. Frontiers in Pharmacology, 2019, 10, 1064.	3.5	7
25	Potential therapeutic effect of curcumin loaded hyalurosomes against inflammatory and oxidative processes involved in the pathogenesis of rheumatoid arthritis: The use of fibroblast-like synovial cells cultured in synovial fluid. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 136, 84-92	4.3	42
26	Antioxidant activity of quercetin in Eudragit-coated liposomes for intestinal delivery. International Journal of Pharmaceutics, 2019, 565, 64-69.	5.2	84
27	Micelle carriers based on dendritic macromolecules containing bis-MPA and glycine for antimalarial drug delivery. Biomaterials Science, 2019, 7, 1661-1674.	5.4	36
28	Coupling the Antimalarial Cell Penetrating Peptide TP10 to Classical Antimalarial Drugs Primaquine and Chloroquine Produces Strongly Hemolytic Conjugates. Molecules, 2019, 24, 4559.	3.8	14
29	Nanoformulation of curcumin-loaded eudragit-nutriosomes to counteract malaria infection by a dual strategy: Improving antioxidant intestinal activity and systemic efficacy. International Journal of Pharmaceutics, 2019, 556, 82-88.	5.2	30
30	Stability, biocompatibility and antioxidant activity of PEC-modified liposomes containing resveratrol. International Journal of Pharmaceutics, 2018, 538, 40-47.	5.2	122
31	Structure-activity relationship of new antimalarial 1-aryl-3-susbtituted propanol derivatives: Synthesis, preliminary toxicity profiling, parasite life cycle stage studies, target exploration, and targeted delivery. European Journal of Medicinal Chemistry, 2018, 152, 489-514.	5.5	4
32	Polyamidoamine Nanoparticles for the Oral Administration of Antimalarial Drugs. Pharmaceutics, 2018, 10, 225.	4.5	17
33	Turning <i>Plasmodium</i> survival strategies against itself. Future Medicinal Chemistry, 2018, 10, 2245-2248.	2.3	0
34	Tocopherol-loaded transfersomes: In vitro antioxidant activity and efficacy in skin regeneration. International Journal of Pharmaceutics, 2018, 551, 34-41.	5.2	79
35	Discovering Putative Prion-Like Proteins in Plasmodium falciparum: A Computational and Experimental Analysis. Frontiers in Microbiology, 2018, 9, 1737.	3.5	42
36	Antimalarial Activity of Orally Administered Curcumin Incorporated in Eudragit®-Containing Liposomes. International Journal of Molecular Sciences, 2018, 19, 1361.	4.1	44

#	Article	IF	CITATIONS
37	Functional response of novel bioprotective poloxamer-structured vesicles on inflamed skin. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 1127-1136.	3.3	16
38	Bifunctional viscous nanovesicles co-loaded with resveratrol and gallic acid for skin protection against microbial and oxidative injuries. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 114, 278-287.	4.3	51
39	Origin and evolution of the sponge aggregation factor gene family. Molecular Biology and Evolution, 2017, 34, msx058.	8.9	27
40	2-picolylamine derivatization for high sensitivity detection of abscisic acid in apicomplexan blood-infecting parasites. Talanta, 2017, 168, 130-135.	5.5	6
41	Biophysical characterization of the association of histones with single-stranded DNA. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 2739-2749.	2.4	7
42	ImmunoPECliposomes for the targeted delivery of novel lipophilic drugs to red blood cells in a falciparum malaria murine model. Biomaterials, 2017, 145, 178-191.	11.4	34
43	Heparin: new life for an old drug. Nanomedicine, 2017, 12, 1727-1744.	3.3	29
44	Adaptation of targeted nanocarriers to changing requirements in antimalarial drug delivery. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 515-525.	3.3	49
45	Physico-chemical characterization of succinyl chitosan-stabilized liposomes for the oral co-delivery of quercetin and resveratrol. Carbohydrate Polymers, 2017, 157, 1853-1861.	10.2	83
46	The antigen-binding fragment of human gamma immunoglobulin prevents amyloid β-peptide folding into β-sheet to form oligomers. Oncotarget, 2017, 8, 41154-41165.	1.8	7
47	Novel strategies for <i>Plasmodium</i> -targeted drug delivery. Expert Opinion on Drug Delivery, 2016, 13, 919-922.	5.0	7
48	Carbohydrate-Carbohydrate Interactions Mediated by Sulfate Esters and Calcium Provide the Cell Adhesion Required for the Emergence of Early Metazoans. Journal of Biological Chemistry, 2016, 291, 9425-9437.	3.4	27
49	Heparin micropatterning onto fouling-release perfluoropolyether-based polymers via photobiotin activation. Colloids and Surfaces B: Biointerfaces, 2016, 146, 250-259.	5.0	7
50	Development of drug-loaded immunoliposomes for the selective targeting and elimination of rosetting Plasmodium falciparum- infected red blood cells. Journal of Controlled Release, 2016, 241, 57-67.	9.9	27
51	Effect of quercetin and resveratrol co-incorporated in liposomes against inflammatory/oxidative response associated with skin cancer. International Journal of Pharmaceutics, 2016, 513, 153-163.	5.2	115
52	Amyloid-β Peptide Nitrotyrosination Stabilizes Oligomers and Enhances NMDAR-Mediated Toxicity. Journal of Neuroscience, 2016, 36, 11693-11703.	3.6	50
53	Marine organism sulfated polysaccharides exhibiting significant antimalarial activity and inhibition of red blood cell invasion by Plasmodium. Scientific Reports, 2016, 6, 24368.	3.3	52
54	Rapid diagnostic tests for malaria: past, present and future. Future Microbiology, 2016, 11, 1379-1382.	2.0	0

#	Article	IF	CITATIONS
55	Possible roles of amyloids in malaria pathophysiology. Future Science OA, 2015, 1, FSO43.	1.9	4
56	Immunoliposome-mediated drug delivery to Plasmodium -infected and non-infected red blood cells as a dual therapeutic/prophylactic antimalarial strategy. Journal of Controlled Release, 2015, 210, 217-229.	9.9	73
57	Therapeutic efficacy of quercetin enzyme-responsive nanovesicles for the treatment of experimental colitis in rats. Acta Biomaterialia, 2015, 13, 216-227.	8.3	74
58	Loading antimalarial drugs into noninfected red blood cells: an undesirable roommate forPlasmodium. Future Medicinal Chemistry, 2015, 7, 833-835.	2.3	11
59	Effects of ethanol and diclofenac on the organization of hydrogenated phosphatidylcholine bilayer vesicles and their ability as skin carriers. Journal of Materials Science: Materials in Medicine, 2015, 26, 137.	3.6	3
60	Development of curcumin loaded sodium hyaluronate immobilized vesicles (hyalurosomes) and their potential on skin inflammation and wound restoring. Biomaterials, 2015, 71, 100-109.	11.4	166
61	Polyamidoamine nanoparticles as nanocarriers for the drug delivery to malaria parasite stages in the mosquito vector. Nanomedicine, 2015, 10, 3401-3414.	3.3	15
62	Structural and Computational Insights into Conformational Diseases: A Review. , 2015, , 134-182.		0
63	Toy kit against malaria: magic bullets, LEGO, Trojan horses and Russian dolls. Therapeutic Delivery, 2014, 5, 1049-1052.	2.2	2
64	Topical Anti-Inflammatory Potential of Quercetin in Lipid-Based Nanosystems: In Vivo and In Vitro Evaluation. Pharmaceutical Research, 2014, 31, 959-968.	3.5	78
65	Use of poly(amidoamine) drug conjugates for the delivery of antimalarials to Plasmodium. Journal of Controlled Release, 2014, 177, 84-95.	9.9	66
66	Molecular arrangements and interconnected bilayer formation induced by alcohol or polyalcohol in phospholipid vesicles. Colloids and Surfaces B: Biointerfaces, 2014, 117, 360-367.	5.0	52
67	Nanomedicine Against Malaria. Current Medicinal Chemistry, 2014, 21, 605-629.	2.4	28
68	Amphiphilic dendritic derivatives as nanocarriers for the targeted delivery of antimalarial drugs. Biomaterials, 2014, 35, 7940-7950.	11.4	81
69	The blood-brain barrier: Structure, function and therapeutic approaches to cross it. Molecular Membrane Biology, 2014, 31, 152-167.	2.0	298
70	Application of heparin as a dual agent with antimalarial and liposome targeting activities toward Plasmodium-infected red blood cells. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, 1719-1728.	3.3	55
71	Antimalarial drug delivery to the mosquito: an option worth exploring?. Future Microbiology, 2014, 9, 579-582.	2.0	19
72	Novel S-adenosyl-L-methionine decarboxylase inhibitors as potent antiproliferative agents against intraerythrocytic Plasmodium falciparum parasites. International Journal for Parasitology: Drugs and Drug Resistance, 2014, 4, 28-36.	3.4	6

#	Article	IF	CITATIONS
73	Posttranslational Nitro-Glycative Modifications of Albumin in Alzheimer's Disease: Implications in Cytotoxicity and Amyloid-12 Peptide Aggregation. Journal of Alzheimer's Disease, 2014, 40, 643-657.	2.6	41
74	Effect of diclofenac and glycol intercalation on structural assembly of phospholipid lamellar vesicles. International Journal of Pharmaceutics, 2013, 456, 1-9.	5.2	43
75	Demonstration of specific binding of heparin to Plasmodium falciparum-infected vs. non-infected red blood cells by single-molecule force spectroscopy. Nanoscale, 2013, 5, 3673.	5.6	38
76	Amyloid fibrils in neurodegenerative diseases: villains or heroes?. Future Medicinal Chemistry, 2013, 5, 1903-1906.	2.3	5
77	Heparin-functionalized nanocapsules: enabling targeted delivery of antimalarial drugs. Future Medicinal Chemistry, 2013, 5, 737-739.	2.3	10
78	Nanotools for the Delivery of Antimicrobial Peptides. Current Drug Targets, 2012, 13, 1158-1172.	2.1	54
79	The Effect of Amyloidogenic Peptides on Bacterial Aging Correlates with Their Intrinsic Aggregation Propensity. Journal of Molecular Biology, 2012, 421, 270-281.	4.2	27
80	In vitro study of magnetite-amyloid Î ² complex formation. Nanomedicine: Nanotechnology, Biology, and Medicine, 2012, 8, 974-980.	3.3	14
81	Self-assembly of human amylin-derived peptides studied by atomic force microscopy and single molecule force spectroscopy. Soft Matter, 2012, 8, 1234-1242.	2.7	5
82	A nanovector with complete discrimination for targeted delivery to Plasmodium falciparum-infected versus non-infected red blood cells in vitro. Journal of Controlled Release, 2011, 151, 202-211.	9.9	80
83	Study of the efficacy of antimalarial drugs delivered inside targeted immunoliposomal nanovectors. Nanoscale Research Letters, 2011, 6, 620.	5.7	47
84	Immunohistochemical analysis of human brain suggests pathological synergism of Alzheimer's disease and diabetes mellitus. Neurobiology of Disease, 2010, 37, 67-76.	4.4	178
85	Modulation of Aβ ₄₂ fìbrillogenesis by glycosaminoglycan structure. FASEB Journal, 2010, 24, 4250-4261.	0.5	66
86	Modulation of Amyloid β Peptide1-42 Cytotoxicity and Aggregation in Vitro by Glucose and Chondroitin Sulfate. Current Alzheimer Research, 2010, 7, 428-438.	1.4	35
87	A singleâ€molecule force spectroscopy nanosensor for the identification of new antibiotics and antimalarials. FASEB Journal, 2010, 24, 4203-4217.	0.5	27
88	Single-Molecule Force Spectroscopy of Cartilage Aggrecan Self-Adhesion. Biophysical Journal, 2010, 99, 3498-3504.	0.5	25
89	Nanotribology Results Show that DNA Forms a Mechanically Resistant 2D Network in Metaphase Chromatin Plates. Biophysical Journal, 2010, 99, 3951-3958.	0.5	13
90	The Role of Protein Sequence and Amino Acid Composition in Amyloid Formation: Scrambling and Backward Reading of IAPP Amyloid Fibrils. Journal of Molecular Biology, 2010, 404, 337-352.	4.2	38

#	Article	IF	CITATIONS
91	Amyloid-dependent triosephosphate isomerase nitrotyrosination induces glycation and tau fibrillation. Brain, 2009, 132, 1335-1345.	7.6	93
92	Self-Recognition and Ca2+-Dependent Carbohydrate-Carbohydrate Cell Adhesion Provide Clues to the Cambrian Explosion. Molecular Biology and Evolution, 2009, 26, 2551-2561.	8.9	32
93	Mimicking direct protein–protein and solvent-mediated interactions in the CDP-methylerythritol kinase homodimer: a pharmacophore-directed virtual screening approach. Journal of Molecular Modeling, 2009, 15, 997-1007.	1.8	17
94	Optical Tweezers Study of Topoisomerase Inhibition. Small, 2009, 5, 1269-1272.	10.0	5
95	Application of the Quartz Crystal Microbalance to the Study of Multivalent Carbohydrate–Carbohydrate Adhesion. Sensor Letters, 2009, 7, 782-787.	0.4	1
96	Inclusion bodies: Specificity in their aggregation process and amyloid-like structure. Biochimica Et Biophysica Acta - Molecular Cell Research, 2008, 1783, 1815-1825.	4.1	131
97	The Sponge as a Model of Cellular Recognition. , 2008, , 75-83.		5
98	Sulfated Polysaccharides Promote the Assembly of Amyloid β1–42 Peptide into Stable Fibrils of Reduced Cytotoxicity. Journal of Biological Chemistry, 2008, 283, 32471-32483.	3.4	70
99	Recent Structural and Computational Insights into Conformational Diseases. Current Medicinal Chemistry, 2008, 15, 1336-1349.	2.4	62
100	Cyclosporin A Suspends Transplantation Reactions in the Marine Sponge <i>Microciona prolifera</i> . Journal of Immunology, 2007, 179, 5927-5935.	0.8	30
101	Proteoglycan Mechanics Studied by Single-molecule Force Spectroscopy of Allotypic Cell Adhesion Glycans. Journal of Biological Chemistry, 2006, 281, 5992-5999.	3.4	35
102	Fine structure study of Aβ 1–42 fibrillogenesis with atomic force microscopy. FASEB Journal, 2005, 19, 1344-1346.	0.5	141
103	Subcellular Localization of Arabidopsis 3-Hydroxy-3-Methylglutaryl-Coenzyme A Reductase. Plant Physiology, 2005, 137, 57-69.	4.8	102
104	The metabolic imbalance underlying lesion formation in Arabidopsis thaliana overexpressing farnesyl diphosphate synthase (isoform�1S) leads to oxidative stress and is triggered by the developmental decline of endogenous HMGR activity. Planta, 2004, 219, 982-992.	3.2	65
105	Circular proteoglycans from sponges: first members of the spongican family. Cellular and Molecular Life Sciences, 2003, 60, 88-112.	5.4	57
106	Apoptosis in Microciona prolifera Allografts. Biological Bulletin, 2003, 205, 199-201.	1.8	8
107	Cell adhesion-related proteins as specific markers of sponge cell types involved in allogeneic recognition. Developmental and Comparative Immunology, 2002, 26, 313-323.	2.3	21
108	Overexpression ofArabidopsis thalianafarnesyl diphosphate synthase (FPS1S) in transgenicArabidopsisinduces a cell death/senescence-like response and reduced cytokinin levels. Plant Journal, 2002, 30, 123-132.	5.7	102

#	Article	IF	CITATIONS
109	Up-regulation of Integrins α3 β1 in Sulfate-Starved Marine Sponge Cells: Functional Correlates. Biological Bulletin, 2001, 201, 238-239.	1.8	3
110	Single Molecule DNA Biophysics with Atomic Force Microscopy. Single Molecules, 2000, 1, 53-58.	0.9	47
111	Enzymatic biosynthesis of N-linked glycan by the marine sponge Microciona prolifera. Biological Bulletin, 2000, 199, 192-194.	1.8	1
112	Supramolecular Structure of a New Family of Circular Proteoglycans Mediating Cell Adhesion in Sponges. Journal of Structural Biology, 2000, 132, 95-105.	2.8	47
113	Single Molecule DNA Biophysics with Atomic Force Microscopy. Single Molecules, 2000, 1, 53-58.	0.9	3
114	Cell adhesion and histocompatibility in sponges. Microscopy Research and Technique, 1999, 44, 204-218.	2.2	50
115	Accumulation in Marine Sponge Grafts of the mRNA Encoding the Main Proteins of the Cell Adhesion System. Journal of Biological Chemistry, 1998, 273, 29545-29553.	3.4	28
116	Hyaluronic Acid-Receptor Binding Demonstrated by Synthetic Adhesive Proteoglycan Peptide Constructs and by Cell Receptors on the Marine Sponge Microciona prolifera. Biological Bulletin, 1998, 195, 216-218.	1.8	7
117	The Main Protein of the Aggregation Factor Responsible for Species-specific Cell Adhesion in the Marine Sponge Microciona prolifera Is Highly Polymorphic. Journal of Biological Chemistry, 1997, 272, 27839-27847.	3.4	48
118	Probing Single Biomolecules with Atomic Force Microscopy. Journal of Structural Biology, 1997, 119, 165-171.	2.8	72
119	A 35-kDa Protein Is the Basic Unit of the Core from the 2 × 104-kDa Aggregation Factor Responsible for Species-specific Cell Adhesion in the Marine Sponge. Journal of Biological Chemistry, 1996, 271, 23558-23565.	3.4	33
120	Use of Rhodamine B Isothiocyanate to Detect Proteoglycan Core Proteins in Polyacrylamide Gels. Analytical Biochemistry, 1995, 227, 394-396.	2.4	4
121	Histories associated with single-stranded DNA do not preclude the formation of double-helical DNA. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1995, 1260, 132-138.	2.4	1
122	Mechanism of Nucleosome Dissociation Produced by Transcription Elongation in a Short Chromatin Template. Biochemistry, 1995, 34, 6711-6719.	2.5	20
123	Different mechanisms for in vitro formation of nucleosome core particles. Biochemistry, 1991, 30, 5022-5032.	2.5	23
124	Synthesis of both enantiomeric forms of 2-substituted 1,3-propanediol monoacetates starting from a common prochiral precursor, using enzymatic transformations in aqueous and in organic media. Tetrahedron Letters, 1986, 27, 5707-5710.	1.4	142