
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4608728/publications.pdf Version: 2024-02-01

IÃ DOEN EDIKSEN

#	Article	IF	CITATIONS
1	Cereal straw incorporation and ryegrass cover crops: The path to equilibrium in soil carbon storage is short. European Journal of Soil Science, 2022, 73, .	3.9	11
2	Contrasting effects of slurry and mineral fertilizer on N2-fixation in grass-clover mixtures. European Journal of Agronomy, 2022, 133, 126431.	4.1	6
3	The Askov longâ€ŧerm field experiment (1894–2021) represents a unique research platform [#] . Journal of Plant Nutrition and Soil Science, 2022, 185, 187-201.	1.9	9
4	Data on growth, uptake and N2 fixation of grass-clover leys fertilized with mineral NÂfertilizer and cattle slurry. Data in Brief, 2022, 42, 107998.	1.0	1
5	Annual protein yield and extractable protein potentials in three legumes and two grasses. Journal of the Science of Food and Agriculture, 2022, 102, 3742-3751.	3.5	3
6	Soil organic C and N stock changes in grass-clover leys: Effect of grassland proportion and organic fertilizer. Geoderma, 2022, 424, 116022.	5.1	10
7	Sulfur from biogas desulfurization: Fate of S during storage in manure and after application to plants. Science of the Total Environment, 2021, 754, 142180.	8.0	12
8	Earthworm burrow number and vertical distribution are affected by the crop sequence of a grass-clover rotation system. European Journal of Soil Biology, 2021, 103, 103294.	3.2	3
9	Linking Protein Quality in Biorefinery Output to Forage Crop Crude Protein Input via the Cornell Net Carbohydrate and Protein System. Applied Biochemistry and Biotechnology, 2021, 193, 2471-2482.	2.9	3
10	Land-use and agriculture in Denmark around year 1900 and the quest for EU Water Framework Directive reference conditions in coastal waters. Ambio, 2021, 50, 1882-1893.	5.5	2
11	Fertilizer replacement value and leaching of nitrogen applied to spring barley in cattle deep litter: A 3-year lysimeter study. Soil and Tillage Research, 2021, 209, 104954.	5.6	6
12	Application method influences the oxidation rate of biologically and chemically produced elemental sulfur fertilizers. Soil Science Society of America Journal, 2021, 85, 746-759.	2.2	3
13	Towards integrated cover crop management: N, P and S release from aboveground and belowground residues. Agriculture, Ecosystems and Environment, 2021, 313, 107392.	5.3	18
14	Enhancing protein recovery in green biorefineries through selection of plant species and time of harvest. Animal Feed Science and Technology, 2021, 278, 115016.	2.2	9
15	Robust Species Distribution Mapping of Crop Mixtures Using Color Images and Convolutional Neural Networks. Sensors, 2021, 21, 175.	3.8	8
16	Nitrogen and Sulfur Availability in Digestates from Anaerobic Co-digestion of Cover Crops, Straw and Cattle Manure. Journal of Soil Science and Plant Nutrition, 2020, 20, 621-636.	3.4	16
17	Anaerobic digestion of co-ensiled cover crop and barley straw: Effect of co-ensiling ratios, manure addition and impact on microbial community structure. Industrial Crops and Products, 2020, 144, 112025.	5.2	13
18	Optimizing yield and flower resources for pollinators in intensively managed multi-species grasslands. Agriculture, Ecosystems and Environment, 2020, 302, 107062.	5.3	15

#	Article	IF	CITATIONS
19	Visiting dark sides of model simulation of carbon stocks in European temperate agricultural soils: allometric function and model initialization. Plant and Soil, 2020, 450, 255-272.	3.7	15
20	Nitrogen fertilizer value of animal slurries with different proportions of liquid and solid fractions: A 3-year study under field conditions. Journal of Agricultural Science, 2020, 158, 707-717.	1.3	7
21	The Preservation and Interpretation of δ ³⁴ S Values in Charred Archaeobotanical Remains. Archaeometry, 2019, 61, 161-178.	1.3	19
22	Effect of acidified cattle slurry on a soil collembolan community: A mesocosmos study. European Journal of Soil Biology, 2019, 94, 103117.	3.2	2
23	Soil nutrient levels define herbage yield but not root biomass in a multispecies grass-legume ley. Agriculture, Ecosystems and Environment, 2019, 276, 47-54.	5.3	14
24	Species distribution mapping of grass clover leys using images for targeted nitrogen fertilization. , 2019, , .		1
25	Anaerobic mono-digestion of lucerne, grass and forbs – Influence of species and cutting frequency. Biomass and Bioenergy, 2018, 109, 199-208.	5.7	17
26	Effects of including forbs on N2-fixation and N yield in red clover-ryegrass mixtures. Plant and Soil, 2018, 424, 525-537.	3.7	12
27	Evaluation of the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) for mitigating soil N 2 O emissions after grassland cultivation. Agriculture, Ecosystems and Environment, 2018, 259, 174-183.	5.3	19
28	Forbs differentially affect soil microbial community composition and functions in unfertilized ryegrass-red clover leys. Soil Biology and Biochemistry, 2018, 121, 87-94.	8.8	13
29	Estimation of extractable protein in botanical fractions of legume and grass species. Grass and Forage Science, 2018, 73, 572-581.	2.9	14
30	Species interactions between forbs and grass-clover contribute to yield gains and weed suppression in forage grassland mixtures. Agriculture, Ecosystems and Environment, 2018, 268, 154-161.	5.3	24
31	Nitrogen fertilizer replacement value of digestates from three green manures. Nutrient Cycling in Agroecosystems, 2018, 112, 355-368.	2.2	21
32	Anaerobic co-digestion of grass and forbs – Influence of cattle manure or grass based inoculum. Biomass and Bioenergy, 2018, 119, 90-96.	5.7	20
33	Nitrogen distribution as affected by stocking density in a combined production system of energy crops and free-range pigs. Agroforestry Systems, 2018, 92, 987-999.	2.0	7
34	Mitigating N2O emissions from clover residues by 3,4-dimethylpyrazole phosphate (DMPP) without adverse effects on the earthworm Lumbricus terrestris. Soil Biology and Biochemistry, 2017, 104, 95-107.	8.8	29
35	Dry matter yield, chemical composition and estimated extractable protein of legume and grass species during the spring growth. Journal of the Science of Food and Agriculture, 2017, 97, 3958-3966.	3.5	37
36	Highly productive forage legume stands show no positive biodiversity effect on yield and N2-fixation. Plant and Soil, 2017, 417, 169-182.	3.7	13

#	Article	lF	CITATIONS
37	N transfer in three-species grass-clover mixtures with chicory, ribwort plantain or caraway. Plant and Soil, 2017, 413, 217-230.	3.7	25
38	Does introduction of clover in an agricultural grassland affect the food base and functional diversity of Collembola?. Soil Biology and Biochemistry, 2017, 112, 165-176.	8.8	10
39	Shortâ€ŧerm residual N unaffected by forbs in grassâ€clover mixtures. Soil Use and Management, 2017, 33, 457-459.	4.9	0
40	Forbs enhance productivity of unfertilised grass-clover leys and support low-carbon bioenergy. Scientific Reports, 2017, 7, 1422.	3.3	25
41	Water flow in soil from organic dairy rotations. Journal of Agricultural Science, 2017, 155, 1113-1123.	1.3	3
42	Microbial N Transformations and N ₂ O Emission after Simulated Grassland Cultivation: Effects of the Nitrification Inhibitor 3,4-Dimethylpyrazole Phosphate (DMPP). Applied and Environmental Microbiology, 2017, 83, .	3.1	52
43	Estimation of the Botanical Composition of Clover-Grass Leys from RGB Images Using Data Simulation and Fully Convolutional Neural Networks. Sensors, 2017, 17, 2930.	3.8	31
44	Species Diversity Effects on Productivity, Persistence and Quality of Multispecies Swards in a Four-Year Experiment. PLoS ONE, 2017, 12, e0169208.	2.5	27
45	3,4-Dimethylpyrazole phosphate (DMPP) reduces activity of ammonia oxidizers without adverse effects on non-target soil microorganisms and functions. Applied Soil Ecology, 2016, 105, 67-75.	4.3	46
46	Substantial nutritional contribution of bacterial amino acids to earthworms and enchytraeids: A case study from organic grasslands. Soil Biology and Biochemistry, 2016, 99, 21-27.	8.8	46
47	Nitrate leaching in maize after cultivation of differently managed grass-clover leys on coarse sand in Denmark. Agriculture, Ecosystems and Environment, 2016, 216, 309-313.	5.3	18
48	Enchytraeids as indicator of soil quality in temporary organic grass-clover leys under contrasting management: A feasibility study. Soil Biology and Biochemistry, 2015, 91, 32-39.	8.8	7
49	Leaching of dissolved organic and inorganic nitrogen from legume-based grasslands. Biology and Fertility of Soils, 2015, 51, 217-230.	4.3	17
50	Carbon footprint of cheese produced on milk from Holstein and Jersey cows fed hay differing in herb content. Journal of Cleaner Production, 2015, 101, 229-237.	9.3	17
51	Nitrate leaching and residual effect in dairy crop rotations with grass–clover leys as influenced by sward age, grazing, cutting and fertilizer regimes. Agriculture, Ecosystems and Environment, 2015, 212, 75-84.	5.3	45
52	Biogas potential from forbs and grass-clover mixture with the application of near infrared spectroscopy. Bioresource Technology, 2015, 198, 124-132.	9.6	19
53	Effects of Acidifying Pig Diets on Emissions of Ammonia, Methane, and Sulfur from Slurry during Storage. Journal of Environmental Quality, 2014, 43, 2086-2095.	2.0	9
54	Methanogenic community changes, and emissions of methane and other gases, during storage of acidified and untreated pig slurry. Journal of Applied Microbiology, 2014, 117, 160-172.	3.1	57

#	Article	IF	CITATIONS
55	Complementary effects of red clover inclusion in ryegrass–white clover swards for grazing and cutting. Grass and Forage Science, 2014, 69, 241-250.	2.9	47
56	Collembola feeding habits and niche specialization in agricultural grasslands of different composition. Soil Biology and Biochemistry, 2014, 74, 31-38.	8.8	26
57	The effect of long-term acidifying feeding on digesta organic acids, mineral balance, and bone mineralization in growing pigs. Animal Feed Science and Technology, 2014, 195, 58-66.	2.2	6
58	Medium-term response of microbial community to rhizodeposits of white clover and ryegrass and tracing of active processes induced by 13C and 15N labelled exudates. Soil Biology and Biochemistry, 2014, 76, 22-33.	8.8	45
59	Effect of four plant species on soil 15N-access and herbage yield in temporary agricultural grasslands. Plant and Soil, 2013, 371, 313-325.	3.7	17
60	Bicarbonate as tracer for assimilated C and homogeneity of 14C and 15N distribution in plants by alternative labeling approaches. Plant and Soil, 2013, 371, 191-198.	3.7	15
61	Emissions of CH4, N2O, NH3 and odorants from pig slurry during winter and summer storage. Nutrient Cycling in Agroecosystems, 2013, 95, 103-113.	2.2	60
62	Spatial and temporal variation in N transfer in grass–white clover mixtures at three Northern European field sites. Soil Biology and Biochemistry, 2013, 57, 654-662.	8.8	43
63	Strategies to mitigate nitrous oxide emissions from herbivore production systems. Animal, 2013, 7, 29-40.	3.3	30
64	Effects of Cattle Slurry Acidification on Ammonia and Methane Evolution during Storage. Journal of Environmental Quality, 2012, 41, 88-94.	2.0	152
65	Effects of grazing strategy on limiting nitrate leaching in grazed grassâ€clover pastures on coarse sandy soil. Soil Use and Management, 2012, 28, 478-487.	4.9	11
66	Sulfur Turnover and Emissions during Storage of Cattle Slurry: Effects of Acidification and Sulfur Addition. Journal of Environmental Quality, 2012, 41, 1633-1641.	2.0	31
67	Fatty acid, tocopherol and carotenoid content in herbage and milk affected by sward composition and season of grazing. Journal of the Science of Food and Agriculture, 2012, 92, 2891-2898.	3.5	22
68	Microbial biomass, microbial diversity, soil carbon storage, and stability after incubation of soil from grass–clover pastures of different age. Biology and Fertility of Soils, 2012, 48, 371-383.	4.3	23
69	Grassland carbon sequestration and emissions following cultivation in a mixed crop rotation. Agriculture, Ecosystems and Environment, 2012, 153, 33-39.	5.3	63
70	N2-fixation and residual N effect of four legume species and four companion grass species. European Journal of Agronomy, 2012, 36, 66-74.	4.1	99
71	Nitrogen transfer from forage legumes to nine neighbouring plants in a multi-species grassland. Plant and Soil, 2012, 350, 71-84.	3.7	154
72	Quantification of chemical sulphur species in bulk soil and organic sulphur fractions by S K-edge XANES spectroscopy. European Journal of Soil Science, 2011, 62, 874-881.	3.9	17

#	Article	IF	CITATIONS
73	Forage herbs improve mineral composition of grassland herbage. Grass and Forage Science, 2011, 66, 415-423.	2.9	95
74	Emissions of Sulfurâ€Containing Odorants, Ammonia, and Methane from Pig Slurry: Effects of Dietary Methionine and Benzoic Acid. Journal of Environmental Quality, 2010, 39, 1097-1107.	2.0	54
75	Impact of organic pig production systems on CO2 emission, C sequestration and nitrate pollution. Agronomy for Sustainable Development, 2010, 30, 721-731.	5.3	58
76	Root size fractions of ryegrass and clover contribute differently to C and N inclusion in SOM. Biology and Fertility of Soils, 2010, 46, 293-297.	4.3	21
77	Sulfur flow in a soil-plant system—effects of long-term treatment history and soil properties. Plant and Soil, 2010, 334, 323-334.	3.7	9
78	Plant uptake of dual-labeled organic N biased by inorganic C uptake: Results of a triple labeling study. Soil Biology and Biochemistry, 2010, 42, 524-527.	8.8	37
79	Urine acidification and mineral metabolism in growing pigs fed diets supplemented with dietary methionine and benzoic acid. Livestock Science, 2010, 134, 113-115.	1.6	11
80	Chapter 2 Soil Sulfur Cycling in Temperate Agricultural Systems. Advances in Agronomy, 2009, 102, 55-89.	5.2	77
81	Soil carbon storage and yields of spring barley following grass leys of different age. European Journal of Agronomy, 2009, 31, 29-35.	4.1	53
82	Net sulfur mineralization potential in Swedish arable soils in relation to long-term treatment history and soil properties. Biology and Fertility of Soils, 2009, 45, 743-751.	4.3	11
83	Effects of slurry acidification with sulphuric acid combined with aeration on the turnover and plant availability of nitrogen. Agriculture, Ecosystems and Environment, 2009, 131, 240-246.	5.3	67
84	Phyto-oestrogens in herbage and milk from cows grazing white clover, red clover, lucerne or chicory-rich pastures. Animal, 2009, 3, 1189-1195.	3.3	54
85	Residual effect and leaching of N and K in cropping systems with clover and ryegrass catch crops on a coarse sand. Agriculture, Ecosystems and Environment, 2008, 123, 99-108.	5.3	63
86	Residual effect and nitrate leaching in grassâ€arable rotations: effect of grassland proportion, sward type and fertilizer history. Soil Use and Management, 2008, 24, 373-382.	4.9	46
87	Fate of 15N and 14C from labelled plant material: Recovery in perennial ryegrass–clover mixtures and in pore water of the sward. Soil Biology and Biochemistry, 2008, 40, 3031-3039.	8.8	23
88	The Fate of Sulfate in Acidified Pig Slurry during Storage and Following Application to Cropped Soil. Journal of Environmental Quality, 2008, 37, 280-286.	2.0	72
89	Growth of legume and nonlegume catch crops and residualâ€N effects in spring barley on coarse sand. Journal of Plant Nutrition and Soil Science, 2007, 170, 773-780.	1.9	60
90	Catch crop strategy and nitrate leaching following grazed grass lover. Soil Use and Management, 2007, 23, 348-358.	4.9	23

#	Article	IF	CITATIONS
91	A model simulation analysis of soil nitrate concentrations—Does soil organic matter pool structure or catch crop growth parameters matter most?. Ecological Modelling, 2007, 205, 209-220.	2.5	13
92	In situ carbon and nitrogen dynamics in ryegrass–clover mixtures: Transfers, deposition and leaching. Soil Biology and Biochemistry, 2007, 39, 804-815.	8.8	70
93	Effect of nose ringing and stocking rate of pregnant and lactating outdoor sows on exploratory behaviour, grass cover and nutrient loss potential. Livestock Science, 2006, 104, 91-102.	1.6	13
94	Critical issues on opioids in chronic non-cancer pain:. Pain, 2006, 125, 172-179.	4.2	445
95	A case of suspected non-neurosurgical adult fatal propofol infusion syndrome. Acta Anaesthesiologica Scandinavica, 2006, 50, 117-119.	1.6	29
96	Potential loss of nutrients from different rearing strategies for fattening pigs on pasture. Soil Use and Management, 2006, 22, 256-266.	4.9	28
97	Nitrate leaching and bread-making quality of spring wheat following cultivation of different grasslands. Agriculture, Ecosystems and Environment, 2006, 116, 165-175.	5.3	22
98	Leaching of soil organic carbon and nitrogen in sandy soils after cultivating grass-clover swards. Biology and Fertility of Soils, 2006, 43, 12-19.	4.3	57
99	Residual nitrogen effect of a dairy crop rotation as influenced by grass-clover ley management, manure type and age. Soil Use and Management, 2005, 21, 278-286.	4.9	17
100	Nitrogen and sulphur management: challenges for organic sources in temperate agricultural systems. Soil Use and Management, 2005, 21, 82-93.	4.9	58
101	Perspectives on nutrient management in mixed farming systems. Soil Use and Management, 2005, 21, 132-140.	4.9	33
102	Simulation of residual effects and nitrate leaching after incorporation of different ley types. European Journal of Agronomy, 2005, 23, 290-304.	4.1	22
103	Gross sulphur mineralisation–immobilisation turnover in soil amended with plant residues. Soil Biology and Biochemistry, 2005, 37, 2216-2224.	8.8	78
104	The natural abundance of13C,15N,34S and14C in archived (1923-2000) plant and soil samples from the Askov long-term experiments on animal manure and mineral fertilizer. Rapid Communications in Mass Spectrometry, 2005, 19, 3216-3226.	1.5	122
105	Nitrogen and sulphur management: challenges for organic sources in temperate agricultural systems. Soil Use and Management, 2005, 21, 82-93.	4.9	4
106	Perspectives on nutrient management in mixed farming systems. Soil Use and Management, 2005, 21, 132-140.	4.9	2
107	Nitrogen and sulphur management: challenges for organic sources in temperate agricultural systems. Soil Use and Management, 2005, 21, 82-93.	4.9	18
108	Perspectives on nutrient management in mixed farming systems. Soil Use and Management, 2005, 21, 132-140.	4.9	15

#	Article	IF	CITATIONS
109	Residual nitrogen effect of a dairy crop rotation as influenced by grass–clover ley management, manure type and age. Soil Use and Management, 2005, 21, 278-286.	4.9	8
110	Nitrate leaching and N2-fixation in grasslands of different composition, age and management. Journal of Agricultural Science, 2004, 142, 141-151.	1.3	49
111	Plant availability of catch crop sulfur following spring incorporation. Journal of Plant Nutrition and Soil Science, 2004, 167, 609-615.	1.9	64
112	Nitrate leaching from an organic dairy crop rotation: the effects of manure type, nitrogen input and improved crop rotation. Soil Use and Management, 2004, 20, 48-54.	4.9	6
113	Sustainable management of potassium , 2004, , 85-102.		28
114	Nitrate leaching from an organic dairy crop rotation: the effects of manure type, nitrogen input and improved crop rotation. Soil Use and Management, 2004, 20, 48-54.	4.9	34
115	Biodegradation of linear alkylbenzene sulfonates in sulfate-leached soil mesocosms. Chemosphere, 2003, 50, 929-937.	8.2	13
116	Exchangeable potassium and potassium balances in organic crop rotations on a coarse sand. Soil Use and Management, 2003, 19, 96-103.	4.9	14
117	Exchangeable potassium and potassium balances in organic crop rotations on a coarse sand. Soil Use and Management, 2003, 19, 96-103.	4.9	38
118	Measurement of arylsulphatase activity in agricultural soils using a simplified assay. Soil Biology and Biochemistry, 2002, 34, 79-82.	8.8	39
119	The effect of catch crops on sulphate leaching and availability of S in the succeeding crop on sandy loam soil in Denmark. Agriculture, Ecosystems and Environment, 2002, 90, 247-254.	5.3	28
120	Sulphate leaching and sulphur balances of an organic cereal crop rotation on three Danish soils. European Journal of Agronomy, 2002, 17, 1-9.	4.1	20
121	Effects of timing of sulphur application on yield, S-uptake and quality of barley. Plant and Soil, 2002, 242, 283-289.	3.7	14
122	Exchangeable potassium in soil as indicator of potassium status in an organic crop rotation on loamy sand. Soil Use and Management, 2002, 18, 84-90.	4.9	32
123	The fate of nitrogen in outdoor pig production. Agronomy for Sustainable Development, 2002, 22, 863-867.	0.8	30
124	Denitrification Losses from Outdoor Piglet Production: Spatial and Temporal Variability. Journal of Environmental Quality, 2001, 30, 1051-1058.	2.0	16
125	Nitrate leaching and growth of cereal crops following cultivation of contrasting temporary grasslands. Journal of Agricultural Science, 2001, 136, 271-281.	1.3	57
126	Soil respiration, nitrogen mineralization and uptake in barley following cultivation of grazed grasslands. Biology and Fertility of Soils, 2001, 33, 139-145.	4.3	66

#	Article	IF	CITATIONS
127	Implications of grazing by sows for nitrate leaching from grassland and the succeeding cereal crop. Grass and Forage Science, 2001, 56, 317-322.	2.9	25
128	Title is missing!. Plant and Soil, 2001, 230, 239-246.	3.7	37
129	Nutrient excretion by outdoor pigs: a case study of distribution, utilization and potential for environmental impact. Soil Use and Management, 2001, 17, 21-29.	4.9	39
130	Sulphate leaching in an organic crop rotation on sandy soil in Denmark. Agriculture, Ecosystems and Environment, 2000, 78, 107-114.	5.3	38
131	Potassium retention and leaching in an organic crop rotation on loamy sand as affected by contrasting potassium budgets. Soil Use and Management, 2000, 16, 200-205.	4.9	38
132	Soil sulphur status following long-term annual application of animal manure and mineral fertilizers. Biology and Fertility of Soils, 1999, 28, 416-421.	4.3	30
133	Nitrate leaching in an organic dairy/crop rotationas affected by organic manure type, livestock densityand crop. Soil Use and Management, 1999, 15, 176-182.	4.9	55
134	Chromium(III) Complexes of the Hexadentate Ligand N,N,N',N'-Tetrakis(2-pyridylmethyl)ethane-1,2-diamine. Synthesis, Structure and Reactivity Acta Chemica Scandinavica, 1999, 53, 1083-1092.	0.7	15
135	Title is missing!. Plant and Soil, 1998, 205, 67-76.	3.7	37
136	The Soil Sulphur Cycle. Nutrients in Ecosystems, 1998, , 39-73.	0.2	57
137	Sulphur cycling in Danish agricultural soils: Inorganic sulphate dynamics and plant uptake. Soil Biology and Biochemistry, 1997, 29, 1379-1385.	8.8	31
138	Sulphur cycling in Danish agricultural soils: Turnover in organic S fractions. Soil Biology and Biochemistry, 1997, 29, 1371-1377.	8.8	34
139	Incorporation of S into soil organic matter in the field as determined by the natural abundance of stable S isotopes. Biology and Fertility of Soils, 1996, 22, 149-155.	4.3	29
140	Measuring natural abundance of stable s isotopes in soil by isotope ratio mass spectrometry. Communications in Soil Science and Plant Analysis, 1996, 27, 1251-1264.	1.4	8
141	Incorporation of S into soil organic matter in the field as determined by the natural abundance of stable S isotopes. Biology and Fertility of Soils, 1996, 22, 149-155.	4.3	Ο
142	Forms and plant-availability of sulfur in cattle and pig slurry. Zeitschrift Fur Pflanzenernahrung Und Bodenkunde = Journal of Plant Nutrition and Plant Science, 1995, 158, 113-116.	0.4	21
143	Sulphur mineralisation in five Danish soils as measured by plant uptake in a pot experiment. Agriculture, Ecosystems and Environment, 1995, 56, 43-51.	5.3	50
144	Physical protection of soil organic S studied using acetylacetone extraction at various intensities of ultrasonic dispersion. Soil Biology and Biochemistry, 1995, 27, 1005-1010.	8.8	30

#	Article	IF	CITATIONS
145	Physical protection of soil organic S studied by extraction and fractionation of soil organic matter. Soil Biology and Biochemistry, 1995, 27, 1011-1016.	8.8	23
146	Correction factors in the determination of natural abundance of stable S isotopes in soil. Applied Radiation and Isotopes, 1994, 45, 889-893.	1.5	4
147	Mechanism of Lactic Acid Formation Catalyzed by a Macrocyclic Chromium(III) Complex. A Comparison with the Glyoxalase I Enzyme Acta Chemica Scandinavica, 1994, 48, 12-19.	0.7	17
148	Amylose complexing capacities of cis- and trans-unsaturated monoglycerides in relation to their functionality in bread. Journal of Cereal Science, 1984, 2, 105-118.	3.7	84
149	Observations on Long Bone Medullary Pressure in Relation to Mean Arterial Blood Pressure in the Anaesthetized Dog. Acta Orthopaedica, 1979, 50, 527-531.	1.4	24
150	PERCUTANEOUS CANNULATION OF THE DORSALIS PEDIS ARTERY: A prospective study. British Journal of Anaesthesia, 1979, 51, 1055-1058.	3.4	10
151	Observations on Long Bone Medullary Pressures in Relation to Arterial Po2, PCO2and pH in the Anaesthetized Dog. Acta Orthopaedica, 1979, 50, 645-651.	1.4	31
152	A Case of Carpal Tunnel Syndrome on the Basis of an Abnormally Long Lumbrical Muscle. Acta Orthopaedica, 1973, 44, 275-277.	1.4	44
153	Soil Sulfur Cycling in Temperate Agricultural Systems. Agronomy, 0, , 25-44.	0.2	10
154	Biological N2-fixation in grass-clover ley in response to N application in cattle slurry vs. mineral fertilizer. Plant and Soil, 0, , 1.	3.7	0