
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4606999/publications.pdf Version: 2024-02-01

DETO ASMIS

#	Article	IF	CITATIONS
1	The Need for Multi-Omics Biomarker Signatures in Precision Medicine. International Journal of Molecular Sciences, 2019, 20, 4781.	4.1	287
2	Small Multifunctional Nanoclusters (Nanoroses) for Targeted Cellular Imaging and Therapy. ACS Nano, 2009, 3, 2686-2696.	14.6	187
3	Nox4 is a Novel Inducible Source of Reactive Oxygen Species in Monocytes and Macrophages and Mediates Oxidized Low Density Lipoprotein–Induced Macrophage Death. Circulation Research, 2010, 106, 1489-1497.	4.5	145
4	Positive effect of dietary soy in ESRD patients with systemic inflammation—correlation between blood levels of the soy isoflavones and the acute-phase reactants. Nephrology Dialysis Transplantation, 2006, 21, 2239-2246.	0.7	110
5	NADPH Oxidase 4 Is Expressed in Pulmonary Artery Adventitia and Contributes to Hypertensive Vascular Remodeling. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 1704-1715.	2.4	103
6	Oxidized LDL Promotes Peroxide-Mediated Mitochondrial Dysfunction and Cell Death in Human Macrophages. Circulation Research, 2003, 92, e20-9.	4.5	101
7	Redox regulation of MAPK phosphatase 1 controls monocyte migration and macrophage recruitment. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E2803-12.	7.1	98
8	Apoptosis induced by oxidized low density lipoprotein in human monocyteâ€derived macrophages involves CD36 and activation of caspaseâ€3. FEBS Journal, 2000, 267, 6050-6059.	0.2	92
9	Bioenergetic Profiles Diverge During Macrophage Polarization: Implications for the Interpretation of ¹⁸ F-FDG PET Imaging of Atherosclerosis. Journal of Nuclear Medicine, 2013, 54, 1661-1667.	5.0	91
10	Macrophages and Intravascular OCTÂBrightÂSpots. JACC: Cardiovascular Imaging, 2015, 8, 63-72.	5.3	81
11	Ursolic acid protects diabetic mice against monocyte dysfunction and accelerated atherosclerosis. Atherosclerosis, 2011, 219, 409-416.	0.8	74
12	Sexual dimorphism in glutathione metabolism and glutathione-dependent responses. Redox Biology, 2020, 31, 101410.	9.0	73
13	Fluid Shear Stress Attenuates Hydrogen Peroxide–Induced c-Jun NH2-Terminal Kinase Activation via a Glutathione Reductase–Mediated Mechanism. Circulation Research, 2002, 91, 712-718.	4.5	71
14	Reactive Oxygen Species and Thiol Redox Signaling in the Macrophage Biology of Atherosclerosis. Antioxidants and Redox Signaling, 2012, 17, 1785-1795.	5.4	71
15	Fat-Specific DsbA-L Overexpression Promotes Adiponectin Multimerization and Protects Mice From Diet-Induced Obesity and Insulin Resistance. Diabetes, 2012, 61, 2776-2786.	0.6	67
16	NADPH Oxidase 4 Mediates Monocyte Priming and Accelerated Chemotaxis Induced by Metabolic Stress. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 415-426.	2.4	64
17	Molecular mechanism of glutathione-mediated protection from oxidized low-density lipoprotein-induced cell injury in human macrophages: Role of glutathione reductase and glutaredoxin. Free Radical Biology and Medicine, 2006, 41, 775-785.	2.9	61
18	A Novel Ligand-independent Apoptotic Pathway Induced by Scavenger Receptor Class B, Type I and Suppressed by Endothelial Nitric-oxide Synthase and High Density Lipoprotein. Journal of Biological Chemistry, 2005, 280, 19087-19096.	3.4	60

#	Article	IF	CITATIONS
19	Oxygen and wound care: A review of current therapeutic modalities and future direction. Wound Repair and Regeneration, 2013, 21, 503-511.	3.0	60
20	Thiol Oxidative Stress Induced by Metabolic Disorders Amplifies Macrophage Chemotactic Responses and Accelerates Atherogenesis and Kidney Injury in LDL Receptor-Deficient Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 1779-1786.	2.4	53
21	Excretion and toxicity of gold–iron nanoparticles. Nanomedicine: Nanotechnology, Biology, and Medicine, 2013, 9, 356-365.	3.3	50
22	Low-Density Lipoprotein From Apolipoprotein E-Deficient Mice Induces Macrophage Lipid Accumulation in a CD36 and Scavenger Receptor Class A-Dependent Manner. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 25, 168-173.	2.4	47
23	Protein Thiol Redox Signaling in Monocytes and Macrophages. Antioxidants and Redox Signaling, 2016, 25, 816-835.	5.4	47
24	Increased Expression of Glutathione Reductase in Macrophages Decreases Atherosclerotic Lesion Formation in Low-Density Lipoprotein Receptor–Deficient Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 1375-1382.	2.4	45
25	Protein <i>S</i> -Glutathionylation Mediates Macrophage Responses to Metabolic Cues from the Extracellular Environment. Antioxidants and Redox Signaling, 2016, 25, 836-851.	5.4	45
26	Characterization of Macrophage Polarization States Using Combined Measurement of 2-Deoxyglucose and Glutamine Accumulation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 1840-1848.	2.4	41
27	Mitogen-activated protein kinase phosphatase 1 (MKP-1) in macrophage biology and cardiovascular disease. A redox-regulated master controller of monocyte function and macrophage phenotype. Free Radical Biology and Medicine, 2017, 109, 75-83.	2.9	38
28	Acute hyperhomocysteinemia decreases NO bioavailability in healthy adults. Atherosclerosis, 2004, 176, 337-344.	0.8	37
29	mTOR drives cerebral blood flow and memory deficits in LDLR ^{â^'/â^'} mice modeling atherosclerosis and vascular cognitive impairment. Journal of Cerebral Blood Flow and Metabolism, 2018, 38, 58-74.	4.3	35
30	A novel thiol oxidationâ€based mechanism for adriamycinâ€induced cell injury in human macrophages. FASEB Journal, 2005, 19, 1866-1868.	0.5	32
31	Prevention of Cholesteryl Ester Accumulation in P388D1 Macrophage-Like Cells by Increased Cellular Vitamin E Depends on Species of Extracellular Cholesterol. Conventional Heterologous Non-Human Cell Cultures are Poor Models of Human Atherosclerotic foam Cell Formation. FEBS Journal, 1995, 233, 171-178.	0.2	31
32	Resveratrol and Quercetin Interact to Inhibit Neointimal Hyperplasia in Mice with a Carotid Injury. Journal of Nutrition, 2012, 142, 1487-1494.	2.9	31
33	Acute maternal oxidant exposure causes susceptibility of the fetal brain to inflammation and oxidative stress. Journal of Neuroinflammation, 2017, 14, 195.	7.2	31
34	Regulation of Monocyte Adhesion and Migration by Nox4. PLoS ONE, 2013, 8, e66964.	2.5	30
35	Dehydroascorbic acid prevents apoptosis induced by oxidized low-density lipoprotein in human monocyte-derived macrophages. FEBS Journal, 1998, 255, 147-155.	0.2	29
36	Redox Regulation of 14-3-3ζ Controls Monocyte Migration. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 1514-1521.	2.4	29

#	Article	IF	CITATIONS
37	Scavenger Receptor BI Prevents Nitric Oxide–Induced Cytotoxicity and Endotoxin-Induced Death. Circulation Research, 2006, 98, e60-5.	4.5	28
38	Low flow oxygenation of fullâ€excisional skin wounds on diabetic mice improves wound healing by accelerating wound closure and reepithelialization. International Wound Journal, 2010, 7, 349-357.	2.9	28
39	S-Glutathionylation in Monocyte and Macrophage (Dys)Function. International Journal of Molecular Sciences, 2013, 14, 15212-15232.	4.1	28
40	Differential Regulation of Macrophage Glucose Metabolism by Macrophage Colony-stimulating Factor and Granulocyte-Macrophage Colony-stimulating Factor: Implications for ¹⁸ F FDG PET Imaging of Vessel Wall Inflammation. Radiology, 2017, 283, 87-97.	7.3	27
41	Vitamin E Supplementation of Human Macrophages Prevents Neither Foam Cell Formation Nor Increased Susceptibility of Foam Cells to Lysis by Oxidized LDL. Arteriosclerosis, Thrombosis, and Vascular Biology, 2000, 20, 2078-2086.	2.4	25
42	Ursolic Acid and Related Analogues: Triterpenoids with Broad Health Benefits. Antioxidants, 2021, 10, 1161.	5.1	25
43	Dyslipidemic Diet-Induced Monocyte "Priming―and Dysfunction in Non-Human Primates Is Triggered by Elevated Plasma Cholesterol and Accompanied by Altered Histone Acetylation. Frontiers in Immunology, 2017, 8, 958.	4.8	24
44	Adriamycin promotes macrophage dysfunction in mice. Free Radical Biology and Medicine, 2006, 41, 165-174.	2.9	23
45	Large variations in human foam cell formation in individuals: a fully autologous in vitro assay based on the quantitative analysis of cellular neutral lipids. Atherosclerosis, 2000, 148, 243-253.	0.8	22
46	Comparison of Lipid-Mediated and Adenoviral Gene Transfer in Human Monocyte-Derived Macrophages and COS-7 Cells. BioTechniques, 2000, 28, 260-270.	1.8	21
47	Calcium-ionophore-induced formation of platelet-activating factor and leukotrienes by horse eosinophils: a comparative study. FEBS Journal, 1990, 187, 475-480.	0.2	20
48	C-terminal fragment of transforming growth factor beta-induced protein (TGFBIp) is required for apoptosis in human osteosarcoma cells. Matrix Biology, 2009, 28, 347-353.	3.6	19
49	Ursolic acid protects monocytes against metabolic stress-induced priming and dysfunction by preventing the induction of Nox4. Redox Biology, 2014, 2, 259-266.	9.0	18
50	TGFβ induces BIGH3 expression and human retinal pericyte apoptosis: a novel pathway of diabetic retinopathy. Eye, 2016, 30, 1639-1647.	2.1	18
51	Concurrent quantification of cellular cholesterol, cholesteryl esters and triglycerides in small biological samples Reevaluation of thin layer chromatography using laser densitometry. Biomedical Applications, 1997, 691, 59-66.	1.7	17
52	Dietary 23–hydroxy ursolic acid protects against atherosclerosis and obesity by preventing dyslipidemia-induced monocyte priming and dysfunction. Atherosclerosis, 2018, 275, 333-341.	0.8	17
53	The role of glial–neuronal metabolic cooperation in modulating progression of multiple sclerosis and neuropathic pain. Immunotherapy, 2019, 11, 129-147.	2.0	17
54	Lipoprotein aggregation protects human monocyte-derived macrophages from OxLDL-induced cytotoxicity. Journal of Lipid Research, 2005, 46, 1124-1132.	4.2	16

RETO ASMIS

#	Article	IF	CITATIONS
55	Vitamin E and the Prevention of Atherosclerosis. International Journal for Vitamin and Nutrition Research, 2001, 71, 18-24.	1.5	15
56	Monocytic MKP-1 is a Sensor of the Metabolic Environment and Regulates Function and Phenotypic Fate of Monocyte-Derived Macrophages in Atherosclerosis. Scientific Reports, 2016, 6, 34223.	3.3	13
57	BIGH3 protein and macrophages in retinal endothelial cell apoptosis. Apoptosis: an International Journal on Programmed Cell Death, 2015, 20, 29-37.	4.9	12
58	Glutaredoxin 1 controls monocyte reprogramming during nutrient stress and protects mice against obesity and atherosclerosis in a sex-specific manner. Nature Communications, 2022, 13, 790.	12.8	12
59	Contact system activation in human sepsis - 47kD HK, a marker of sepsis severity?. Swiss Medical Weekly, 2008, 138, 142-9.	1.6	11
60	Physical Partitioning is the Main Mechanism of alpha-Tocopherol and Cholesterol Transfer between Lipoproteins and P388D1 Macrophage-Like Cells. FEBS Journal, 1997, 250, 600-607.	0.2	10
61	Regulation of Prostaglandin E2Production in P388D1Macrophage-Like Cells. Annals of the New York Academy of Sciences, 1994, 744, 1-10.	3.8	9
62	Glutaredoxin 2a overexpression in macrophages promotes mitochondrial dysfunction but has little or no effect on atherogenesis in LDL-receptor null mice. Atherosclerosis, 2015, 241, 69-78.	0.8	9
63	Dietary 23-hydroxy ursolic acid protects against diet-induced weight gain and hyperglycemia by protecting monocytes and macrophages against nutrient stress-triggered reprogramming and dysfunction and preventing adipose tissue inflammation. Journal of Nutritional Biochemistry, 2020, 86, 108483.	4.2	9
64	Macrophage TGF- <i>l̂2</i> 1 and the Proapoptotic Extracellular Matrix Protein BIGH3 Induce Renal Cell Apoptosis in Prediabetic and Diabetic Conditions. International Journal of Clinical Medicine, 2016, 07, 496-510.	0.2	8
65	Dual-wavelength multifrequency photothermal wave imaging combined with optical coherence tomography for macrophage and lipid detection in atherosclerotic plaques using gold nanoparticles. Journal of Biomedical Optics, 2012, 17, 1.	2.6	7
66	Differences in forward angular light scattering distributions between M1 and M2 macrophages. Journal of Biomedical Optics, 2015, 20, 115002.	2.6	7
67	P53 status influences regulation of HSPs and ribosomal proteins by PDTC and radiation. Biochemical and Biophysical Research Communications, 2006, 343, 435-442.	2.1	6
68	Pyrrolidine dithiocarbamate (PDTC) blocks apoptosis and promotes ionizing radiation-induced necrosis of freshly-isolated normal mouse spleen cells. Apoptosis: an International Journal on Programmed Cell Death, 2010, 15, 705-714.	4.9	6
69	Use of near-infrared luminescent gold nanoclusters for detection of macrophages. Journal of Biomedical Optics, 2012, 17, 026006.	2.6	6
70	Interactions of \hat{I}^2 tubulin isotypes with glutathione in differentiated neuroblastoma cells subject to oxidative stress. Cytoskeleton, 2018, 75, 283-289.	2.0	6
71	Quantification of Monocyte Chemotactic Activity In Vivo and Characterization of Blood Monocyte Derived Macrophages. Journal of Visualized Experiments, 2019, , .	0.3	4
72	Sexual dimorphisms in redox biology. Redox Biology, 2020, 31, 101533.	9.0	4

RETO ASMIS

#	Article	IF	CITATIONS
73	Oxidatively modified lowâ€density lipoproteins are potential mediators of proteasome inhibitor resistance in multiple myeloma. International Journal of Cancer, 2021, 148, 3032-3040.	5.1	3
74	Inhibition of myeloid HDAC2 upregulates glutaredoxin 1 expression, improves protein thiol redox state and protects against high-calorie diet-induced monocyte dysfunction and atherosclerosis. Atherosclerosis, 2021, 328, 23-32.	0.8	3
75	Monocytes and Macrophages: A Fresh Look at Functional and Phenotypic Diversity. Antioxidants and Redox Signaling, 2016, 25, 756-757.	5.4	2
76	"Topical―HDL for vein grafts: A new solution to an old problem?. Atherosclerosis, 2011, 214, 259-260.	0.8	1
77	Dietary Supplementation with 23-Hydroxy Ursolic Acid Accelerates the Recovery from Acute Experimental Autoimmune Encephalomyelitis (EAE) in a Murine Model of Multiple Sclerosis. Free Radical Biology and Medicine, 2020, 159, S113.	2.9	1
78	Abstract 4902: Oxidized low-density lipoprotein is a potentially potent mediator of proteasome inhibitor resistance in multiple myeloma. Cancer Research, 2018, 78, 4902-4902.	0.9	1
79	Redox Regulation of 14-3-3zeta Controls Monocyte Migration. Free Radical Biology and Medicine, 2013, 65, S74.	2.9	0
80	Monocytic glutaredoxin 1 protects mice against obesity, hyperglycemia and atherosclerosis. Atherosclerosis, 2017, 263, e13.	0.8	0
81	PKM2 S-glutathionylation promotes the reprogramming of macrophage metabolism and activation states. Free Radical Biology and Medicine, 2018, 128, S27-S28.	2.9	0
82	The role of monocytic glutaredoxin 1 in atherogenesis Atherosclerosis, 2020, 315, e6.	0.8	0
83	Scavenger receptor BI prevents nitric oxideâ€induced oxidative stress. FASEB Journal, 2006, 20, A1071.	0.5	0
84	Abstract 182: Mitogen-Activated Protein Kinase Phosphatase-1 and the Redox Regulation of Monocyte Adhesion and Migration. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, .	2.4	0
85	Ursolic Acid Protects Monocytes Against Priming and Dysfunction Induced by Metabolic Stress by Preventing Induction of Nox4. FASEB Journal, 2013, 27, 637.17.	0.5	0
86	Novel LC/MS/MSâ€based Proteomics Approach for the Identification of S â€Glutathionylated Proteins: Analysis of Redox Regulation of Metabolic Priming in Monocytes. FASEB Journal, 2013, 27, 614.1.	0.5	0
87	Abstract 466: Redox Regulation of 14-3-3zeta Controls Monocyte Migration. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, .	2.4	0
88	Identification of structural features of ursolic acid required to protect monocytes against metabolic stressâ€induced dysfunction (249.5). FASEB Journal, 2014, 28, 249.5.	0.5	0
89	Structureâ€Function Analysis of Ursolic Acid and its Analogs to Identify Their Antiâ€inflammatory Mechanism of Action. FASEB Journal, 2015, 29, 390.6.	0.5	0
90	Abstract 203: Redox Regulation of MKP-1 and the Functional Reprogramming of Monocyte-Derived Macrophages by Metabolic Stress. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, .	2.4	0

#	Article	IF	CITATIONS
91	Abstract 450: Monocytic Glutaredoxin 1 Protects Mice Against Obesity, Hyperglycemia and Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, .	2.4	0
92	Chemoresistance in multiple myeloma: oxidized LDL suppresses the antiâ€myeloma effects of boronicâ€based proteasome inhibitors. FASEB Journal, 2019, 33, 250.3.	0.5	0
93	Designing a Science-based Strategy to Prepare For the Next Pandemic. Journal of Student Research, 2021, 10, .	0.1	Ο