Jianlin Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4606984/publications.pdf

Version: 2024-02-01

		76326	8	32547	
199	6,416	40		72	
papers	citations	h-index		g-index	
			_		
203	203	203		5111	
all docs	docs citations	times ranked		citing authors	

#	Article	IF	CITATIONS
1	Fullâ€Color Holographic Display and Encryption with Fullâ€Polarization Degree of Freedom. Advanced Materials, 2022, 34, e2103192.	21.0	85
2	Poincaré sphere analogue for optical vortex knots. Optics Letters, 2022, 47, 313.	3.3	5
3	Unveiling radial breathing mode in a particle-on-mirror plasmonic nanocavity. Nanophotonics, 2022, 11, 487-494.	6.0	9
4	Metasurface-assisted multidimensional manipulation of a light wave based on spin-decoupled complex amplitude modulation. Optics Letters, 2022, 47, 353.	3.3	8
5	Plasmonic Fano-like resonance in double-stacked graphene nanostrip arrays. Journal of the Optical Society of America B: Optical Physics, 2022, 39, 843.	2.1	4
6	Plasmon-enhanced photoluminescence from MoS ₂ monolayer with topological insulator nanoparticle. Nanophotonics, 2022, 11, 995-1001.	6.0	8
7	Tip-enhanced four-wave mixing internally illuminated by ultrafast vector light field. Optics Letters, 2022, 47, 1037-1040.	3.3	O
8	Phase-matching-induced near-chirp-free solitons in normal-dispersion fiber lasers. Light: Science and Applications, 2022, 11, 25.	16.6	39
9	Subdiffraction Focusing Metalens Based on the Depletion of Bessel Beams. IEEE Photonics Journal, 2022, 14, 1-5.	2.0	3
10	Ferroelectric Liquid Crystal Compound Lens Based on Pancharatnam–Berry Phase. Crystals, 2022, 12, 231.	2.2	0
11	Topological Insulator Plasmonics and Enhanced Light-Matter Interactions. Lecture Notes in Nanoscale Science and Technology, 2022, , 89-116.	0.8	3
12	Dual-wavelength surface plasmon resonance holographic microscopy for simultaneous measurements of cell adhesion gap and cytoplasm refractive index. Optics Letters, 2022, 47, 2306-2309.	3.3	1
13	Internal dynamics in bound states of unequal solitons. Optics Letters, 2022, 47, 1618.	3.3	7
14	Electrically induced dynamic Fano-like resonance in a graphene-coated fiber grating. Photonics Research, 2022, 10, 1238.	7.0	5
15	Femtosecond laser plasmonic nano-printing metasurfaces for multiple-dimensional manipulation of light fields. Optics Letters, 2022, 47, 2290.	3.3	2
16	High-resolution surface plasmon resonance holographic microscopy based on symmetrical excitation. Optics and Lasers in Engineering, 2022, 153, 107000.	3.8	1
17	High-Efficiency Second-Harmonic and Sum-Frequency Generation in a Silicon Nitride Microring Integrated with Few-Layer GaSe. ACS Photonics, 2022, 9, 1671-1678.	6.6	8
18	Chip-integrated van der Waals PN heterojunction photodetector with low dark current and high responsivity. Light: Science and Applications, 2022, 11, 101.	16.6	57

#	Article	IF	Citations
19	Second harmonic generation in a hollow-core fiber filled with GaSe nanosheets. Science China Information Sciences, 2022, 65, 1.	4.3	10
20	Electrically Tunable Second Harmonic Generation in Atomically Thin ReS ₂ . ACS Nano, 2022, 16, 6404-6413.	14.6	13
21	2D materials-enabled optical modulators: From visible to terahertz spectral range. Applied Physics Reviews, 2022, 9, .	11.3	32
22	Graphene-empowered dynamic metasurfaces and metadevices. Opto-Electronic Advances, 2022, 5, 200098-200098.	13.3	54
23	Self-frequency-conversion nanowire lasers. Light: Science and Applications, 2022, 11, 120.	16.6	13
24	Light-field focusing and modulation through scattering media based on dual-polarization-encoded digital optical phase conjugation. Optics Letters, 2022, 47, 2738.	3.3	4
25	Simultaneous measurement of near-water-film air temperature and humidity fields based on dual-wavelength digital holographic interferometry. Optics Express, 2022, 30, 17278.	3.4	4
26	High capacity topological coding based on nested vortex knots and links. Nature Communications, 2022, 13, 2705.	12.8	24
27	Comparison of common-path off-axis digital holography and transport of intensity equation in quantitative phase measurement. Optics and Lasers in Engineering, 2022, 157, 107126.	3.8	5
28	Tightly autofocusing beams along the spherical surface. Optics Express, 2022, 30, 26192.	3.4	2
29	Flexible trajectory control of Bessel beams with pure phase modulation. Optics Express, 2022, 30, 25661.	3.4	6
30	Strong cladding mode excitation in ultrathin fiber inscribed Bragg grating with ultraviolet photosensitivity. Optics Express, 2022, 30, 25936.	3.4	4
31	High-responsivity MoS2 hot-electron telecom-band photodetector integrated with microring resonator. Applied Physics Letters, 2022, 120, .	3.3	9
32	Controllable oscillated spin Hall effect of Bessel beam realized by liquid crystal Pancharatnam-Berry phase elements. Light: Science and Applications, 2022, 11 , .	16.6	31
33	Real-time and wide-field mapping of cell-substrate adhesion gap and its evolution via surface plasmon resonance holographic microscopy. Biosensors and Bioelectronics, 2021, 174, 112826.	10.1	15
34	Optical vortex knots and links via holographic metasurfaces. Advances in Physics: X, 2021, 6, .	4.1	9
35	RestoreNet: a deep learning framework for image restoration in optical synthetic aperture imaging system. Optics and Lasers in Engineering, 2021, 139, 106463.	3.8	30
36	Visible frequency broadband dielectric metahologram by random Fourier phase-only encoding. Science China: Physics, Mechanics and Astronomy, 2021, 64, 1.	5.1	6

#	Article	IF	Citations
37	A review of common-path off-axis digital holography: towards high stable optical instrument manufacturing. Light Advanced Manufacturing, $2021, 2, 1$.	5.1	23
38	Temperature-compensated fiber directional-bend sensor based on a sandwiched MMF–PMPCF structure. Applied Optics, 2021, 60, 433.	1.8	3
39	Continuous-wave pumped frequency upconversions in an InSe-integrated microfiber. Optics Letters, 2021, 46, 733.	3.3	10
40	Phase fluctuation cancellation for coherent-detection BOTDA fiber sensors based on optical subcarrier multiplexing. Optics Letters, 2021, 46, 757.	3.3	5
41	Few-Layer Graphene Integrated Tilted Fiber Grating For All-Optical Switching. Journal of Lightwave Technology, 2021, 39, 1477-1482.	4.6	8
42	Velocity property of an optical chain generated by the tightly focused femtosecond radially polarization pulse. Applied Optics, 2021, 60, 2380.	1.8	5
43	Dual-channel illumination surface plasmon resonance holographic microscopy for resolution improvement. Optics Letters, 2021, 46, 1604.	3.3	4
44	Augmenting photoluminescence of monolayer MoS ₂ using high order modes in a metal dimer-on-film nanocavity. Photonics Research, 2021, 9, 501.	7.0	12
45	Dynamically measuring the holo-information of light fields in three-dimensional space using a periodic polarization-structured light. Science China: Physics, Mechanics and Astronomy, 2021, 64, 1.	5.1	8
46	Co-located angularly offset fiber Bragg grating pair for temperature-compensated unambiguous 3D shape sensing. Applied Optics, 2021, 60, 4185.	1.8	4
47	Ultralow Threshold, Single-Mode InGaAs/GaAs Multiquantum Disk Nanowire Lasers. ACS Nano, 2021, 15, 9126-9133.	14.6	19
48	Soliton metamorphosis dynamics in ultrafast fiber lasers. Physical Review A, 2021, 103, .	2.5	10
49	Polarization independent and non-reciprocal absorption in multi-layer anisotropic black phosphorus metamaterials. Optics Express, 2021, 29, 21336.	3.4	15
50	MoTe ₂ PN Homojunction Constructed on a Silicon Photonic Crystal Cavity for High-Performance Photodetector. ACS Photonics, 2021, 8, 2431-2439.	6.6	22
51	Nanometric displacement sensor with a switchable measuring range using a cylindrical vector beam excited silicon nanoantenna. Optics Express, 2021, 29, 25109.	3.4	4
52	Dynamic strain measurement based on ultrafast Brillouin collision in the correlation domain. Optics Letters, 2021, 46, 3488.	3.3	5
53	Giant All-Optical Modulation of Second-Harmonic Generation Mediated by Dark Excitons. ACS Photonics, 2021, 8, 2320-2328.	6.6	11
54	Realization and Modulation of Fano-Like Lineshape in Fiber Bragg Gratings. Journal of Lightwave Technology, 2021, 39, 4419-4423.	4.6	3

#	Article	IF	CITATIONS
55	Femtosecond laser-induced spatial-frequency-shifted nanostructures by polarization ellipticity modulation. Optics Express, 2021, 29, 29766.	3.4	1
56	On-demand light wave manipulation enabled by single-layer dielectric metasurfaces. APL Photonics, 2021, 6, .	5.7	8
57	Complete structural characterization of single carbon nanotubes by Rayleigh scattering circular dichroism. Nature Nanotechnology, 2021, 16, 1073-1078.	31.5	18
58	Fano resonance from a one-dimensional topological photonic crystal. APL Photonics, 2021, 6, 086105.	5.7	14
59	Ferroelectric liquid crystal Pancharatnam-Berry lens with a fast control of output light's polarization-handedness. Optics Express, 2021, 29, 27472.	3.4	1
60	Nanofocusing of a metallized double periodic arranged nanocone array for surface-enhanced Raman spectroscopy. Optics Express, 2021, 29, 28086.	3.4	3
61	RestoreNet-Plus: Image restoration via deep learning in optical synthetic aperture imaging system. Optics and Lasers in Engineering, 2021, 146, 106707.	3.8	17
62	Generation of polarization and phase singular beams in fibers and fiber lasers. Advanced Photonics, 2021, 3, .	11.8	89
63	Sparse-view imaging of a fiber internal structure in holographic diffraction tomography via a convolutional neural network. Applied Optics, 2021, 60, A234.	1.8	7
64	10.1063/5.0053812.1., 2021,,.		O
64	10.1063/5.0053812.1., 2021, , . Stable loosely bounded asymmetric soliton molecules in fiber lasers. Physical Review A, 2021, 104, .	2.5	0
		2.5	
65	Stable loosely bounded asymmetric soliton molecules in fiber lasers. Physical Review A, 2021, 104, . Periodic attraction and repulsion within the tight-bound π-phase soliton molecule. Optics Letters,		11
65	Stable loosely bounded asymmetric soliton molecules in fiber lasers. Physical Review A, 2021, 104, . Periodic attraction and repulsion within the tight-bound π-phase soliton molecule. Optics Letters, 2021, 46, 5599. Dispersion Characteristic of Spatiotemporal Sharply Autofocused Vector Airy-Circular Airy Gaussian	3.3	7
65 66 67	Stable loosely bounded asymmetric soliton molecules in fiber lasers. Physical Review A, 2021, 104, . Periodic attraction and repulsion within the tight-bound Ĭ€-phase soliton molecule. Optics Letters, 2021, 46, 5599. Dispersion Characteristic of Spatiotemporal Sharply Autofocused Vector Airy-Circular Airy Gaussian Vortex Wave Packets. Frontiers in Physics, 2021, 9, . Metallic nanosphere-assisted coupling ultrafast surface plasmon polaritons background-free tip	3.3 2.1	11 7 0
65 66 67 68	Stable loosely bounded asymmetric soliton molecules in fiber lasers. Physical Review A, 2021, 104, . Periodic attraction and repulsion within the tight-bound Ĩ€-phase soliton molecule. Optics Letters, 2021, 46, 5599. Dispersion Characteristic of Spatiotemporal Sharply Autofocused Vector Airy-Circular Airy Gaussian Vortex Wave Packets. Frontiers in Physics, 2021, 9, . Metallic nanosphere-assisted coupling ultrafast surface plasmon polaritons background-free tip nanofocusing. Optics Letters, 2021, 46, 5554-5557. Compact Polarization-resolved Common-path Digital Holography based on Pancharatnam-Berry Phase.	3.3 2.1 3.3	11 7 0
65 66 67 68	Stable loosely bounded asymmetric soliton molecules in fiber lasers. Physical Review A, 2021, 104, . Periodic attraction and repulsion within the tight-bound Ĩ€-phase soliton molecule. Optics Letters, 2021, 46, 5599. Dispersion Characteristic of Spatiotemporal Sharply Autofocused Vector Airy-Circular Airy Gaussian Vortex Wave Packets. Frontiers in Physics, 2021, 9, . Metallic nanosphere-assisted coupling ultrafast surface plasmon polaritons background-free tip nanofocusing. Optics Letters, 2021, 46, 5554-5557. Compact Polarization-resolved Common-path Digital Holography based on Pancharatnam-Berry Phase. Optics Letters, 2021, 46, 5862-5865. Observation of optical vortex knots and links associated with topological charge. Optics Express,	3.3 2.1 3.3	11 7 0 0

#	Article	IF	Citations
73	Object-independent tilt detection for optical sparse aperture system with large-scale piston error via deep convolution neural network. Optics Express, 2021, 29, 41670.	3.4	2
74	Physical vapor deposition of large-scale PbSe films and its applications in pulsed fiber lasers. Nanophotonics, 2020, 9, 2367-2375.	6.0	11
75	Au–InSe van der Waals Schottky junctions with ultralow reverse current and high photosensitivity. Nanoscale, 2020, 12, 4094-4100.	5.6	31
76	Tunable nonreciprocal reflection and its stability in a non-PT-symmetric plasmonic resonators coupled waveguide systems. Applied Physics Express, 2020, 13, 012009.	2.4	33
77	Magnetic plasmon resonances in nanostructured topological insulators for strongly enhanced light–MoS2 interactions. Light: Science and Applications, 2020, 9, 191.	16.6	52
78	Axially Tailored Light Field by Means of a Dielectric Metalens. Physical Review Applied, 2020, 14, .	3.8	12
79	Selective Remote-Excitation of Gap Mode in Metallic Nanowire-Nanoparticle System Using Chiral Surface Plasmon Polaritons. IEEE Journal of Quantum Electronics, 2020, 56, 1-6.	1.9	9
80	Giant and Anisotropic Nonlinear Optical Responses of 1D van der Waals Material Tellurium. Advanced Optical Materials, 2020, 8, 2001273.	7.3	17
81	Formation and Evolution of Soliton in Two-Mode Fiber Laser. IEEE Photonics Journal, 2020, 12, 1-8.	2.0	3
82	Real-Time Target Detection in Visual Sensing Environments Using Deep Transfer Learning and Improved Anchor Box Generation. IEEE Access, 2020, 8, 193512-193522.	4.2	6
83	Controlling Resonance Lineshapes of a Side-Coupled Waveguide-Microring Resonator. Journal of Lightwave Technology, 2020, 38, 4429-4434.	4.6	9
84	Observation of excitonic series in monolayer and few-layer black phosphorus. Physical Review B, 2020, 101, .	3.2	25
85	Difference frequency generation in monolayer MoS ₂ . Nanoscale, 2020, 12, 19638-19643.	5 . 6	14
86	Transport of intensity equation from a single intensity image via deep learning. Optics and Lasers in Engineering, 2020, 134, 106233.	3.8	35
87	Tying Polarizationâ€6witchable Optical Vortex Knots and Links via Holographic Allâ€Dielectric Metasurfaces. Laser and Photonics Reviews, 2020, 14, 1900366.	8.7	31
88	Fano resonance lineshapes in a waveguide-microring structure enabled by an air-hole. APL Photonics, 2020, 5, .	5.7	42
89	High-efficiency second-order nonlinear processes in an optical microfibre assisted by few-layer GaSe. Light: Science and Applications, 2020, 9, 63.	16.6	44
90	Polarization-switchable nanoripples fabricated on a silicon surface by femtosecond-laser-assisted nanopatterning. Applied Optics, 2020, 59, 7211.	1.8	2

#	Article	IF	Citations
91	Acceleration of autofocusing with improved edge extraction using structure tensor and Schatten norm. Optics Express, 2020, 28, 14712.	3.4	17
92	Classification of cell morphology with quantitative phase microscopy and machine learning. Optics Express, 2020, 28, 23916.	3.4	17
93	Tightly autofocusing beams: an effective enhancement of longitudinally polarized fields. Optics Letters, 2020, 45, 575.	3.3	13
94	Y4-Net: a deep learning solution to one-shot dual-wavelength digital holographic reconstruction. Optics Letters, 2020, 45, 4220.	3.3	49
95	Self-accelerated optical activity in free space induced by the Gouy phase. Photonics Research, 2020, 8, 475.	7.0	16
96	Recent progress of pulsed fiber lasers based on transition-metal dichalcogenides and black phosphorus saturable absorbers. Nanophotonics, 2020, 9, 2215-2231.	6.0	58
97	Hybrid vector beams with non-uniform orbital angular momentum density induced by designed azimuthal polarization gradient*. Chinese Physics B, 2020, 29, 094203.	1.4	5
98	Tightly focused light field with controllable pure transverse polarization state at the focus. Optics Letters, 2020, 45, 6034.	3.3	3
99	Chiralityâ€Assisted Highâ€Efficiency Metasurfaces with Independent Control of Phase, Amplitude, and Polarization. Advanced Optical Materials, 2019, 7, 1801479.	7. 3	181
100	Second Harmonic and Sum-Frequency Generations from a Silicon Metasurface Integrated with a Two-Dimensional Material. ACS Photonics, 2019, 6, 2252-2259.	6.6	52
101	Linear Dichroism and Nondestructive Crystalline Identification of Anisotropic Semimetal Fewâ€Layer MoTe ₂ . Small, 2019, 15, e1903159.	10.0	24
102	2D MoTe ₂ : Linear Dichroism and Nondestructive Crystalline Identification of Anisotropic Semimetal Fewâ€Layer MoTe ₂ (Small 44/2019). Small, 2019, 15, 1970239.	10.0	1
103	Fano-Like Resonance in an All-in-Fiber Structure. IEEE Photonics Journal, 2019, 11, 1-7.	2.0	6
104	A method for fast and robustly measuring the state of polarization of arbitrary light beams based on Pancharatnam-Berry phase. Journal of Applied Physics, 2019, 126, .	2.5	6
105	Sb2Te3 topological insulator: surface plasmon resonance and application in refractive index monitoring. Nanoscale, 2019, 11, 4759-4766.	5.6	52
106	Measurement of thermal effect in high-power laser irradiated liquid crystal device using digital holographic interferometry. Applied Physics B: Lasers and Optics, 2019, 125, 1.	2.2	1
107	Optical vortex fiber laser based on modulation of transverse modes in two mode fiber. APL Photonics, 2019, 4, .	5.7	20
108	All-optically controlled slow and fast lights in graphene-coated tilted fiber Bragg grating. Applied Physics Express, 2019, 12, 072010.	2.4	5

#	Article	IF	CITATIONS
109	Highly efficient plasmonic nanofocusing on a metallized fiber tip with internal illumination of the radial vector mode using an acousto-optic coupling approach. Nanophotonics, 2019, 8, 921-929.	6.0	27
110	Topological insulator based Tamm plasmon polaritons. APL Photonics, 2019, 4, .	5 . 7	40
111	A compact structure for realizing Lorentzian, Fano, and electromagnetically induced transparency resonance lineshapes in a microring resonator. Nanophotonics, 2019, 8, 841-848.	6.0	40
112	Valley Vortex States and Degeneracy Lifting via Photonic Higher-Band Excitation. Physical Review Letters, 2019, 122, 123903.	7.8	24
113	Grating-assisted coupling enhancing plasmonic tip nanofocusing illuminated via radial vector beam. Nanophotonics, 2019, 8, 2303-2311.	6.0	12
114	Automatic compensation of phase aberrations in digital holographic microscopy based on sparse optimization. APL Photonics, 2019, 4, .	5.7	32
115	Interference-assisted kaleidoscopic meta-plexer for arbitrary spin-wavefront manipulation. Light: Science and Applications, 2019, 8, 3.	16.6	153
116	Completely Spin-Decoupled Dual-Phase Hybrid Metasurfaces for Arbitrary Wavefront Control. ACS Photonics, 2019, 6, 211-220.	6.6	132
117	Modulation of orbital angular momentum on the propagation dynamics of light fields. Frontiers of Optoelectronics, 2019, 12, 69-87.	3.7	9
118	Anti–parity-time symmetry in diffusive systems. Science, 2019, 364, 170-173.	12.6	217
119	Unidirectional scattering exploited transverse displacement sensor with tunable measuring range. Optics Express, 2019, 27, 4944.	3.4	15
120	Measurement of full polarization states with hybrid holography based on geometric phase. Optics Express, 2019, 27, 7968.	3 . 4	13
121	One-step robust deep learning phase unwrapping. Optics Express, 2019, 27, 15100.	3.4	219
122	Symmetry selective cladding modes coupling in ultrafast-written fiber Bragg gratings in two-mode fiber. Optics Express, 2019, 27, 18410.	3.4	8
123	Complex refractive index measurement for atomic-layer materials via surface plasmon resonance holographic microscopy. Optics Letters, 2019, 44, 2982.	3.3	10
124	Accurate and rapid measurement of optical vortex links and knots. Optics Letters, 2019, 44, 3849.	3.3	12
125	Y-Net: a one-to-two deep learning framework for digital holographic reconstruction. Optics Letters, 2019, 44, 4765.	3.3	119
126	Selective excitation of a three-dimensionally oriented single plasmonic dipole. Photonics Research, 2019, 7, 693.	7.0	10

#	Article	IF	Citations
127	Azimuthal vector beam exciting silver triangular nanoprisms for increasing the performance of surface-enhanced Raman spectroscopy. Photonics Research, 2019, 7, 1447.	7.0	13
128	Measurement of thermal effect in laser pumped silicon employing infrared digital holographic interferometry. Optics Express, 2019, 27, 9439.	3.4	2
129	Flexibly tunable high-quality-factor induced transparency in plasmonic systems. Scientific Reports, 2018, 8, 1558.	3.3	65
130	Highâ€Performance Volatile Organic Compounds Microsensor Based on Fewâ€Layer MoS ₂ â€Coated Photonic Crystal Cavity. Advanced Optical Materials, 2018, 6, 1700882.	7.3	13
131	Catalystlike effect of orbital angular momentum on the conversion of transverse to three-dimensional spin states within tightly focused radially polarized beams. Physical Review A, 2018, 97, .	2.5	41
132	In-Line Mach-Zehnder Interferometer With D-Shaped Fiber Grating for Temperature-Discriminated Directional Curvature Measurement. Journal of Lightwave Technology, 2018, 36, 742-747.	4.6	49
133	Passively Q-Switched and Mode-Locked Fiber Laser Based on an ReS2 Saturable Absorber. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24, 1-6.	2.9	144
134	Label-free glucose biosensor based on enzymatic graphene oxide-functionalized tilted fiber grating. Sensors and Actuators B: Chemical, 2018, 254, 1033-1039.	7.8	121
135	Plasmonic Manipulation and Applications in Nanostructures/Nanomaterials. , 2018, , .		0
136	Integrated digital holographic microscopy based on surface plasmon resonance. Optics Express, 2018, 26, 25437.	3.4	8
137	A MoSe ₂ /WSe ₂ Heterojunctionâ€Based Photodetector at Telecommunication Wavelengths. Advanced Functional Materials, 2018, 28, 1804388.	14.9	95
138	Multiple Optical Frequency Conversions in Few‣ayer GaSe Assisted by a Photonic Crystal Cavity. Advanced Optical Materials, 2018, 6, 1800698.	7.3	15
139	Ultrafast Lasers: Graphene Actively Mode-Locked Lasers (Adv. Funct. Mater. 28/2018). Advanced Functional Materials, 2018, 28, 1870194.	14.9	6
140	Graphene Actively Mode‣ocked Lasers. Advanced Functional Materials, 2018, 28, 1801539.	14.9	39
141	Creation of independently controllable multiple focal spots from segmented Pancharatnam-Berry phases. Scientific Reports, 2018, 8, 9831.	3.3	14
142	Second Harmonic Generation in Atomically Thin MoTe ₂ . Advanced Optical Materials, 2018, 6, 1701334.	7.3	54
143	Wavelength-multiplexing surface plasmon holographic microscopy. Optics Express, 2018, 26, 13549.	3.4	12
144	Quantitative phase microscopy for cellular dynamics based on transport of intensity equation. Optics Express, 2018, 26, 586.	3.4	53

#	Article	IF	Citations
145	Quantitative and Dynamic Phase Imaging of Biological Cells by the Use of the Digital Holographic Microscopy Based on a Beam Displacer Unit. IEEE Photonics Journal, 2018, 10, 1-10.	2.0	16
146	Cylindrical vector beam-excited frequency-tunable second harmonic generation in a plasmonic octamer. Photonics Research, 2018, 6, 157.	7.0	22
147	Extraordinary Second Harmonic Generation in ReS ₂ Atomic Crystals. ACS Photonics, 2018, 5, 3485-3491.	6.6	57
148	Lowâ€Power Continuousâ€Wave Second Harmonic Generation in Semiconductor Nanowires. Laser and Photonics Reviews, 2018, 12, 1800126.	8.7	6
149	Measurement of ultrafast combustion process of premixed ethylene/oxygen flames in narrow channel with digital holographic interferometry. Optics Express, 2018, 26, 28497.	3.4	21
150	Mode evolution and nanofocusing of grating-coupled surface plasmon polaritons on metallic tip. Opto-Electronic Advances, 2018, 1, 18001001-18001007.	13.3	35
151	Ultrafast all-fiber based cylindrical-vector beam laser. Applied Physics Letters, 2017, 110, .	3.3	69
152	High performance graphene oxide-based humidity sensor integrated on a photonic crystal cavity. Applied Physics Letters, 2017, 110, .	3.3	33
153	Fano resonance with high local field enhancement under azimuthally polarized excitation. Scientific Reports, 2017, 7, 1049.	3.3	13
154	A method for simultaneously measuring polarization and phase of arbitrarily polarized beams based on Pancharatnam-Berry phase. Applied Physics Letters, 2017, 110, .	3.3	28
155	Investigation of the fiber <scp>B</scp> ragg grating inscribed in multimode fiber by femtosecond laser. Microwave and Optical Technology Letters, 2017, 59, 214-219.	1.4	3
156	Optical Heterodyne Microvibration Detection Based on All-Fiber Acousto-Optic Superlattice Modulation. Journal of Lightwave Technology, 2017, 35, 3821-3824.	4.6	13
157	Dual-wavelength common-path digital holographic microscopy for quantitative phase imaging of biological cells. Optical Engineering, 2017, 56, 111712.	1.0	12
158	Polarization modulation based on graphene-integrated Ex-TFG in thin-cladding fibre., 2017,,.		0
159	Strong plasmonic confinement and optical force in phosphorene pairs. Optics Express, 2017, 25, 5255.	3.4	65
160	Graphene-supported manipulation of surface plasmon polaritons in metallic nanowaveguides. Photonics Research, 2017, 5, 162.	7.0	105
161	Common-path digital holographic microscopy for near-field phase imaging based on surface plasmon resonance. Applied Optics, 2017, 56, 3223.	2.1	24
162	Compact surface plasmon holographic microscopy for near-field film mapping. Optics Letters, 2017, 42, 3462.	3.3	22

#	Article	IF	Citations
163	Vortex-controlled morphology conversion of microstructures on silicon induced by femtosecond vector vortex beams. Applied Physics Letters, 2017, 111, .	3.3	44
164	High-performance humidity sensor based on a polyvinyl alcohol-coated photonic crystal cavity. Optics Letters, 2016, 41, 5515.	3.3	43
165	High-order optical vortex generation in a few-mode fiber via cascaded acoustically driven vector mode conversion. Optics Letters, 2016, 41, 5082.	3.3	87
166	Managing focal fields of vector beams with multiple polarization singularities. Applied Optics, 2016, 55, 9049.	2.1	8
167	Graphene-induced unique polarization tuning properties of excessively tilted fiber grating. Optics Letters, 2016, 41, 5450.	3.3	29
168	Quasi-Bessel beams with longitudinally varying polarization state generated by employing spectrum engineering. Optics Letters, 2016, 41, 4811.	3.3	32
169	All-optical control of microfiber resonator by graphene's photothermal effect. Applied Physics Letters, 2016, 108, .	3.3	81
170	Longitudinal spin separation of light and its performance in three-dimensionally controllable spin-dependent focal shift. Scientific Reports, 2016, 6, 20774.	3.3	33
171	Manipulation of infrared light in graphene nanostructures. , 2016, , .		0
172	Nanowires-assisted excitation and propagation of mid-infrared surface plasmon polaritons in graphene. Journal of Applied Physics, 2016, 120, .	2.5	14
173	Generation of perfect vectorial vortex beams. Optics Letters, 2016, 41, 2205.	3.3	151
174	Dual-wavelength common-path digital holographic microscopy for quantitative phase imaging based on lateral shearing interferometry. Applied Optics, 2016, 55, 7287.	2.1	76
175	Tunable Fano-like resonance enabled by coupling a microsphere with a fiber Mach–Zehnder interferometer. Applied Optics, 2016, 55, 5756.	2.1	11
176	Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets. Scientific Reports, 2016, 6, 23583.	3.3	168
177	Quantitative measurement of thermal lensing in diode-side-pumped Nd:YAG laser by use of digital holographic interferometry. Optics Express, 2016, 24, 28185.	3.4	23
178	Miniaturized fiber Fabry-Pérot interferometer for strain sensing. Microwave and Optical Technology Letters, 2016, 58, 1510-1514.	1.4	7
179	Nonlinear Saturable Absorption of Liquidâ€Exfoliated Molybdenum/Tungsten Ditelluride Nanosheets. Small, 2016, 12, 1489-1497.	10.0	211
180	Optimized weak measurement for spatial spin-dependent shifts at Brewster angle. Applied Physics B: Lasers and Optics, 2016, 122, 1.	2.2	4

#	Article	IF	CITATIONS
181	Carbon nanotube-deposited tilted fiber Bragg grating for refractive index and temperature sensing. IEEE Photonics Technology Letters, 2016, , 1-1.	2.5	5
182	Graphene-controlled fiber Bragg grating and enabled optical bistability. Optics Letters, 2016, 41, 603.	3.3	30
183	WS_2 saturable absorber for dissipative soliton mode locking at 106 and 155 Âμm. Optics Express, 2015, 23, 27509.	3.4	187
184	<italic>In-Situ</italic> Monitoring Method for Solution Volatilization Using Tilted Fiber Bragg Grating. IEEE Sensors Journal, 2015, 15, 3000-3003.	4.7	4
185	WS2 mode-locked ultrafast fiber laser. Scientific Reports, 2015, 5, 7965.	3.3	406
186	Graphene-assisted all-fiber phase shifter and switching. Optica, 2015, 2, 468.	9.3	183
187	Improvement of measurement accuracy in digital holographic microscopy by using dual-wavelength technique. Journal of Micro/ Nanolithography, MEMS, and MOEMS, 2015, 14, 041313.	0.9	24
188	A highly efficient thermo-optic microring modulator assisted by graphene. Nanoscale, 2015, 7, 20249-20255.	5.6	99
189	Dynamically measuring unstable reaction–diffusion process by using digital holographic interferometry. Optics and Lasers in Engineering, 2014, 57, 1-5.	3.8	12
190	Bend measurement using an etched fiber incorporating a fiber Bragg grating. Optics Letters, 2013, 38, 214.	3.3	27
191	Visual investigation on the heat dissipation process of a heat sink by using digital holographic interferometry. Journal of Applied Physics, 2013, 114, .	2.5	15
192	Digital holographic interferometry based on wavelength and angular multiplexing for measuring the ternary diffusion. Optics Letters, 2012, 37, 1211.	3.3	34
193	Visual and dynamical measurement of Rayleigh-Benard convection by using fiber-based digital holographic interferometry. Journal of Applied Physics, 2012, 112, 113113.	2.5	3
194	Symmetry-breaking diffraction and dynamic self-trapping in optically induced hexagonal photonic lattices. Applied Physics Letters, 2012, 100, 061907.	3.3	5
195	A Bandwidth-Tuning Device Based on Polymer-Packaged Fiber Bragg Grating. IEEE Photonics Technology Letters, 2011, 23, 1225-1227.	2.5	4
196	Resolution improvement of digital holographic images based on angular multiplexing with incoherent beams in orthogonal polarization states. Optics Letters, 2010, 35, 3519.	3.3	25
197	Phase aberration compensation of digital holographic microscopy based on least squares surface fitting. Optics Communications, 2009, 282, 3873-3877.	2.1	91
198	Simultaneous Control of Plasmon-Exciton and Plasmon-Trion Couplings in an Au Nanosphere and Monolayer WS2 Hybrid System. APL Photonics, 0, , .	5.7	3

#	Article	IF	CITATIONS
199	Mid-wave infrared planar optical device via femtosecond laser ablation on sulfur-based polymeric glass surface. Optical Materials Express, 0, , .	3.0	3