
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4606432/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Alpha-Synuclein RT-QuIC Products Generated by the Olfactory Mucosa of Patients with Parkinson's Disease and Multiple System Atrophy Induce Inflammatory Responses in SH-SY5Y Cells. Cells, 2022, 11, 87.	4.1	5
2	CD146+ Pericytes Subset Isolated from Human Micro-Fragmented Fat Tissue Display a Strong Interaction with Endothelial Cells: A Potential Cell Target for Therapeutic Angiogenesis. International Journal of Molecular Sciences, 2022, 23, 5806.	4.1	7
3	Complement Activation Profile in Myasthenia Gravis Patients: Perspectives for Tailoring Anti-Complement Therapy. Biomedicines, 2022, 10, 1360.	3.2	1
4	Halogenation of the N â€Terminus Tyrosine 10 Promotes Supramolecular Stabilization of the Amyloidâ€Î² Sequence 7–12. ChemistryOpen, 2020, 9, 253-260.	1.9	6
5	Enhanced self-assembly of the 7–12 sequence of amyloid-β peptide by tyrosine bromination. Supramolecular Chemistry, 2020, 32, 247-255.	1.2	8
6	242nd ENMC International Workshop: Diagnosis and management of juvenile myasthenia gravis Hoofddorp, the Netherlands, 1–3 March 2019. Neuromuscular Disorders, 2020, 30, 254-264.	0.6	12
7	7-T MRI tracking of mesenchymal stromal cells after lung injection in a rat model. European Radiology Experimental, 2020, 4, 54.	3.4	5
8	Therapeutic Effect of Bifidobacterium Administration on Experimental Autoimmune Myasthenia Gravis in Lewis Rats. Frontiers in Immunology, 2019, 10, 2949.	4.8	22
9	Autoantibody Diagnostics in Neuroimmunology: Experience From the 2018 Italian Neuroimmunology Association External Quality Assessment Program. Frontiers in Neurology, 2019, 10, 1385.	2.4	26
10	Tollâ€like receptors 7 and 9 in myasthenia gravis thymus: amplifiers of autoimmunity?. Annals of the New York Academy of Sciences, 2018, 1413, 11-24.	3.8	28
11	Gut microbiota and probiotics: novel immune system modulators in myasthenia gravis?. Annals of the New York Academy of Sciences, 2018, 1413, 49-58.	3.8	36
12	LYVE-1 is 'on stage' now: an emerging player in dendritic cell docking to lymphatic endothelial cells. Cellular and Molecular Immunology, 2018, 15, 663-665.	10.5	6
13	Administration of bifidobacterium and lactobacillus strains modulates experimental myasthenia gravis and experimental encephalomyelitis in Lewis rats. Oncotarget, 2018, 9, 22269-22287.	1.8	38
14	A propensity score analysis for comparison of T-3b and VATET in myasthenia gravis. Neurology, 2017, 89, 189-195.	1.1	11
15	Validation of the italian version of the 15â€item Myasthenia Gravis Qualityâ€ofâ€Life questionnaire. Muscle and Nerve, 2017, 56, 716-720.	2.2	8
16	Diagnostics of myasthenic syndromes: detection of anti-AChR and anti-MuSK antibodies. Neurological Sciences, 2017, 38, 253-257.	1.9	12
17	Suppression of CHRN endocytosis by carbonic anhydrase CAR3 in the pathogenesis of myasthenia gravis. Autophagy, 2017, 13, 1981-1994.	9.1	14
18	Validity, reliability, and sensitivity to change of the myasthenia gravis activities of daily living profile in a sample of Italian myasthenic patients. Neurological Sciences, 2017, 38, 1927-1931.	1.9	5

#	Article	IF	CITATIONS
19	In vitro labelling and detection of mesenchymal stromal cells: a comparison between magnetic resonance imaging of iron-labelled cells and magnetic resonance spectroscopy of fluorine-labelled cells. European Radiology Experimental, 2017, 1, 6.	3.4	6
20	Epstein-Barr virus in tumor-infiltrating B cells of myasthenia gravis thymoma: an innocent bystander or an autoimmunity mediator?. Oncotarget, 2017, 8, 95432-95449.	1.8	23
21	A Novel Approach to Reinstating Tolerance in Experimental Autoimmune Myasthenia Gravis Using a Targeted Fusion Protein, mCTA1–T146. Frontiers in Immunology, 2017, 8, 1133.	4.8	10
22	Animal models of myasthenia gravis: utility and limitations. International Journal of General Medicine, 2016, 9, 53.	1.8	32
23	Identification of a gene expression signature in peripheral blood of multiple sclerosis patients treated with disease-modifying therapies. Clinical Immunology, 2016, 173, 133-146.	3.2	9
24	Validation of the besta neurological institute rating scale for myasthenia gravis. Muscle and Nerve, 2016, 53, 32-37.	2.2	11
25	A novel infection- and inflammation-associated molecular signature in peripheral blood of myasthenia gravis patients. Immunobiology, 2016, 221, 1227-1236.	1.9	33
26	Increased expression of Toll-like receptors 7 and 9 in myasthenia gravis thymus characterized by active Epstein–Barr virus infection. Immunobiology, 2016, 221, 516-527.	1.9	47
27	<i>In vivo</i> quantitative magnetization transfer imaging correlates with histology during de―and remyelination in cuprizoneâ€ŧreated mice. NMR in Biomedicine, 2015, 28, 327-337.	2.8	71
28	European Database for Myasthenia Gravis: A model for an international disease registry. Neurology, 2014, 83, 189-191.	1.1	8
29	Development of the MG-DIS: an ICF-based disability assessment instrument for myasthenia gravis. Disability and Rehabilitation, 2014, 36, 546-555.	1.8	18
30	<scp>VAV</scp> 1 and <scp>BAFF</scp> , via <scp>NF</scp> ήB pathway, are genetic risk factors for myasthenia gravis. Annals of Clinical and Translational Neurology, 2014, 1, 329-339.	3.7	27
31	Altered miRNA expression is associated with neuronal fate in G93A-SOD1 ependymal stem progenitor cells. Experimental Neurology, 2014, 253, 91-101.	4.1	31
32	Increased expression KIR4.1 potassium channel in experimental models of demyelination. Journal of Neuroimmunology, 2014, 275, 108.	2.3	0
33	Innate immunity in myasthenia gravis thymus: Pathogenic effects of Toll-like receptor 4 signaling on autoimmunity. Journal of Autoimmunity, 2014, 52, 74-89.	6.5	62
34	A Superfluorinated Molecular Probe for Highly Sensitive <i>in Vivo</i> ¹⁹ F-MRI. Journal of the American Chemical Society, 2014, 136, 8524-8527.	13.7	113
35	Orphan drugs to treat myasthenia gravis. Expert Opinion on Orphan Drugs, 2013, 1, 373-384.	0.8	1
36	Differential targeting of immune-cells by Pixantrone in experimental myasthenia gravis. Journal of Neuroimmunology, 2013, 258, 41-50.	2.3	3

#	Article	IF	CITATIONS
37	Complete stable remission and autoantibody specificity in myasthenia gravis. Neurology, 2013, 80, 188-195.	1.1	53
38	A New Thiopurine Sâ€Methyltransferase Haplotype Associated With Intolerance to Azathioprine. Journal of Clinical Pharmacology, 2013, 53, 67-74.	2.0	21
39	Patient registries: useful tools for clinical research in myasthenia gravis. Annals of the New York Academy of Sciences, 2012, 1274, 107-113.	3.8	7
40	Recommendations for myasthenia gravis clinical trials. Muscle and Nerve, 2012, 45, 909-917.	2.2	122
41	Acetylcholine Receptor-Induced Experimental Myasthenia Gravis: What Have We Learned from Animal Models After Three Decades?. Archivum Immunologiae Et Therapiae Experimentalis, 2012, 60, 19-30.	2.3	30
42	An Optimized Method for Manufacturing a Clinical Scale Dendritic Cell-Based Vaccine for the Treatment of Glioblastoma. PLoS ONE, 2012, 7, e52301.	2.5	30
43	The thymus in myasthenia gravis: Site of "innate autoimmunity�. Muscle and Nerve, 2011, 44, 467-484.	2.2	56
44	Type I interferon and Toll-like receptor expression characterizes inflammatory myopathies. Neurology, 2011, 76, 2079-2088.	1.1	71
45	Naturally Occurring CD4+CD25+ Regulatory T Cells Prevent but Do Not Improve Experimental Myasthenia Gravis. Journal of Immunology, 2010, 185, 5656-5667.	0.8	22
46	Detection of poliovirus-infected macrophages in thymus of patients with myasthenia gravis. Neurology, 2010, 74, 1118-1126.	1.1	51
47	Risk factors for tumor occurrence in patients with myasthenia gravis. Journal of Neurology, 2009, 256, 1221-1227.	3.6	29
48	Effect of IgG immunoadsorption on serum cytokines in MG and LEMS patients. Journal of Neuroimmunology, 2008, 201-202, 104-110.	2.3	28
49	Thymoma-associated myasthenia gravis: Outcome, clinical and pathological correlations in 197 patients on a 20-year experience. Journal of Neuroimmunology, 2008, 201-202, 237-244.	2.3	73
50	Pixantrone (BBR2778) Reduces the Severity of Experimental Autoimmune Myasthenia Gravis in Lewis Rats. Journal of Immunology, 2008, 180, 2696-2703.	0.8	10
51	The Kinesin Superfamily Motor Protein KIF4 Is Associated With Immune Cell Activation in Idiopathic Inflammatory Myopathies. Journal of Neuropathology and Experimental Neurology, 2008, 67, 624-632.	1.7	20
52	Allorecognition of human neural stem cells by peripheral blood lymphocytes despite low expression of MHC molecules: role of TGF-Â in modulating proliferation. International Immunology, 2007, 19, 1063-1074.	4.0	53
53	Sa.21. Thymus of Myasthenic Patients with Thymitis and Thymic Involution Express High Levels of Toll-Like Receptor 4. Clinical Immunology, 2006, 119, S112.	3.2	0
54	Delayed administration of erythropoietin and its non-erythropoietic derivatives ameliorates chronic murine autoimmune encephalomyelitis. Journal of Neuroimmunology, 2006, 172, 27-37.	2.3	103

#	Article	IF	CITATIONS
55	Immunomodulation of TGF-beta1 in mdx mouse inhibits connective tissue proliferation in diaphragm but increases inflammatory response: Implications for antifibrotic therapy. Journal of Neuroimmunology, 2006, 175, 77-86.	2.3	114
56	Dendritic cells pulsed with glioma lysates induce immunity against syngeneic intracranial gliomas and increase survival of tumor-bearing mice. Neurological Research, 2006, 28, 527-531.	1.3	34
57	Increased Toll-Like Receptor 4 Expression in Thymus of Myasthenic Patients with Thymitis and Thymic Involution. American Journal of Pathology, 2005, 167, 129-139.	3.8	58
58	Anti-MOG autoantibodies in Italian multiple sclerosis patients: specificity, sensitivity and clinical association. International Immunology, 2004, 16, 559-565.	4.0	51
59	Breakdown of Tolerance to a Self-Peptide of Acetylcholine Receptor α-Subunit Induces Experimental Myasthenia Gravis in Rats. Journal of Immunology, 2004, 172, 2697-2703.	0.8	70
60	Analysis of SjTREC Levels in Thymus from MG Patients and Normal Children. Annals of the New York Academy of Sciences, 2003, 998, 270-274.	3.8	2
61	Immunization with Rat-, but Not Torpedo-Derived 97-116 Peptide of the AChR α-Subunit Induces Experimental Myasthenia Gravis in Lewis Rat. Annals of the New York Academy of Sciences, 2003, 998, 391-394.	3.8	5
62	Effect on T Cell Recognition and Immunogenicity of Alanine-Substituted Peptides Corresponding to 97-116 Sequence of the Rat AChR α-Subunit. Annals of the New York Academy of Sciences, 2003, 998, 395-398.	3.8	4
63	Myasthenia Gravis (MG): Epidemiological Data and Prognostic Factors. Annals of the New York Academy of Sciences, 2003, 998, 413-423.	3.8	135
64	Video-assisted thoracoscopic extended thymectomy and extended transsternal thymectomy (T-3b) in non-thymomatous myasthenia gravis patients: remission after 6 years of follow-up. Journal of the Neurological Sciences, 2003, 212, 31-36.	0.6	126
65	Fibrogenic cytokines and extent of fibrosis in muscle of dogs with X-linked golden retriever muscular dystrophy. Neuromuscular Disorders, 2002, 12, 828-835.	0.6	51
66	Antibodies against GluR3 peptides are not specific for Rasmussen's encephalitis but are also present in epilepsy patients with severe, early onset disease and intractable seizures. Journal of Neuroimmunology, 2002, 131, 179-185.	2.3	151
67	Oral administration of an immunodominant T-cell epitope downregulates Th1/Th2 cytokines and prevents experimental myasthenia gravis. Journal of Clinical Investigation, 1999, 104, 1287-1295.	8.2	45
68	Identification of a Novel HLA Class II Association with DQB1*0502 in an Italian Myasthenic Population. Annals of the New York Academy of Sciences, 1998, 841, 355-359.	3.8	24
69	Anti-titin and Antiryanodine Receptor Antibodies in Myasthenia Gravis Patients with Thymoma. Annals of the New York Academy of Sciences, 1998, 841, 538-541.	3.8	35
70	Oral Administration of an Immunodominant TAChR Epitope Modulates Antigen-specific T Cell Responses in Mice. Annals of the New York Academy of Sciences, 1998, 841, 568-571.	3.8	2
71	Plasma Treatment in Diseases of the Neuromuscular Junction. Annals of the New York Academy of Sciences, 1998, 841, 803-810.	3.8	10
72	The expression of co-stimulatory and accessory molecules on cultured human muscle cells is not dependent on stimulus by pro-inflammatory cytokines: relevance for the pathogenesis of inflammatory myopathy. Journal of Neuroimmunology, 1998, 85, 52-58.	2.3	22

#	Article	IF	CITATIONS
73	Major histocompatibility complex class II molecule expression on muscle cells is regulated by differentiation: implications for the immunopathogenesis of muscle autoimmune diseases. Journal of Neuroimmunology, 1996, 68, 53-60.	2.3	24
74	T-Cell Receptor-CDR3 Sequences of Polymyositis Muscle-Infiltrating T-Lymphocytes Indicate a Conventional Antigen as Target. Annals of the New York Academy of Sciences, 1995, 756, 414-417.	3.8	1
75	T-Cell Infiltration in Polymyositis Is Characterized by Coexpression of Cytotoxic and T-Cell-Activating Cytokine Transcripts. Annals of the New York Academy of Sciences, 1995, 756, 418-420.	3.8	15
76	Presentation of endogenous acetylcholine receptor epitope by an MHC class II-transfected human muscle cell line to a specific CD4+ T cell clone from a myasthenia gravis patient. Journal of Neuroimmunology, 1993, 46, 57-65.	2.3	29
77	cDNA and Genomic Clones Encoding the Human Muscle Acetylcholine Receptor. Annals of the New York Academy of Sciences, 1993, 681, 165-167.	3.8	8
78	Approaches for Studying the Pathogenic T Cells in Autoimmune Patients. Annals of the New York Academy of Sciences, 1993, 681, 219-237.	3.8	33
79	HL A-A2-Restricted T-Cell Line Recognizing an Epitope of the Human Acetylcholine Receptor. Annals of the New York Academy of Sciences, 1993, 681, 276-279.	3.8	2
80	Analysis of T cell receptor repertoire of muscle-infiltrating T lymphocytes in polymyositis. Restricted V alpha/beta rearrangements may indicate antigen-driven selection Journal of Clinical Investigation, 1993, 91, 2880-2886.	8.2	143
81	Two isoforms of the muscle acetylcholine receptor α-subunit are translated in the human cell line TE671. FEBS Letters, 1991, 295, 116-118.	2.8	29
82	A short plasma exchange protocol is effective in severe myasthenia gravis. Journal of Neurology, 1991, 238, 103-107.	3.6	64
83	Increased incidence of certain TCR and HLA genes associated with myasthenia gravis in Italians. Journal of Autoimmunity, 1990, 3, 431-440.	6.5	20
84	Anti AChR antibody: Relevance to diagnosis and clinical aspects of myasthenia gravis. Italian Journal of Neurological Sciences, 1988, 9, 141-145.	0.1	16
85	Use of immunoadsorbent columns for antiacetylcholine receptor antibody removal from plasma of myasthenia gravis patients. Plasma Therapy and Transfusion Technology, 1988, 9, 73-75.	0.2	1
86	Immunomodulatory Treatments for Myasthenia Gravis: Plasma Exchange, Intravenous Immunoglobulins and Semiselective Immunoadsorption. , 0, , .		0