
Xuegeng Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4605979/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Localization of rare earth ions in an inhomogeneous magnetic field toward their magnetic separation. Journal of Rare Earths, 2022, 40, 1598-1605.	4.8	3
2	Rhodium-decorated nanoconical nickel electrode synthesis and characterization as an electrochemical active cathodic material for hydrogen production. Applied Surface Science, 2022, 592, 153326.	6.1	12
3	Dynamics of single hydrogen bubbles at Pt microelectrodes in microgravity. Physical Chemistry Chemical Physics, 2021, 23, 11818-11830.	2.8	20
4	Effect of deposition current density on the Co–Ni/SiO ₂ alloy composite coatings using scanning jet electrodeposition. Surface Topography: Metrology and Properties, 2021, 9, 015027.	1.6	6
5	Oscillatory Copper Deposition on Conical Iron Electrodes in a Nonuniform Magnetic Field. Magnetochemistry, 2021, 7, 46.	2.4	5
6	Experimental and numerical investigations of Ni–Co–SiO2 alloy films deposited by magnetic-field-assisted jet plating. Surface and Coatings Technology, 2021, 423, 127583.	4.8	11
7	Batch reactor vs. flow column – Mechanistic investigation and modeling of Au(III) ions adsorption from aqueous solutions containing Ni2+, Na+, Clâ^ and ClO4â^' as impurities. Sustainable Materials and Technologies, 2020, 23, e00142.	3.3	3
8	Oscillatory surface deformation of paramagnetic rare-earth solutions driven by an inhomogeneous magnetic field. Physical Review E, 2020, 101, 062601.	2.1	4
9	Mitigating Meniscus Instabilities in Solution-Sheared Polymer Films for Organic Field-Effect Transistors. ACS Applied Materials & Interfaces, 2019, 11, 30079-30088.	8.0	9
10	Experiments on the magnetic enrichment of rare-earth metal ions in aqueous solutions in a microflow device. Journal of Flow Chemistry, 2019, 9, 175-185.	1.9	11
11	Cytocompatible, Injectable, and Electroconductive Soft Adhesives with Hybrid Covalent/Noncovalent Dynamic Network. Advanced Science, 2019, 6, 1802077.	11.2	84
12	Mass transfer and electrolyte flow during electrodeposition on a conically shaped electrode under the influence of a magnetic field. Journal of Electroanalytical Chemistry, 2019, 842, 203-213.	3.8	18
13	Oscillating Hydrogen Bubbles at Pt Microelectrodes. Physical Review Letters, 2019, 123, 214503.	7.8	45
14	Thermocapillary convection during hydrogen evolution at microelectrodes. Electrochimica Acta, 2019, 297, 929-940.	5.2	45
15	Reversibly Assembled Electroconductive Hydrogel via a Host–Guest Interaction for 3D Cell Culture. ACS Applied Materials & Interfaces, 2019, 11, 7715-7724.	8.0	69
16	Noncovalently Assembled Electroconductive Hydrogel. ACS Applied Materials & Interfaces, 2018, 10, 14418-14425.	8.0	50
17	Marangoni convection at electrogenerated hydrogen bubbles. Physical Chemistry Chemical Physics, 2018, 20, 11542-11548.	2.8	71
18	Growth and detachment of single hydrogen bubbles in a magnetohydrodynamic shear flow. Physical Review Fluids, 2017, 2, .	2.5	28

XUEGENG YANG

#	Article	IF	CITATIONS
19	Numerical simulation of mass transfer and convection near a hydrogen bubble during water electrolysis in a magnetic field. Magnetohydrodynamics, 2017, 53, 193-200.	0.3	3
20	On the Electrolyte Convection around a Hydrogen Bubble Evolving at a Microelectrode under the Influence of a Magnetic Field. Journal of the Electrochemical Society, 2016, 163, E248-E257.	2.9	44
21	Interplay of the Open Circuit Potential-Relaxation and the Dissolution Behavior of a Single H2Bubble Generated at a Pt Microelectrode. Journal of Physical Chemistry C, 2016, 120, 15137-15146.	3.1	9
22	Space- and time-resolved interferometric measurements of the thermal boundary layer at a periodically magnetized gadolinium plate. International Journal of Refrigeration, 2015, 56, 246-255.	3.4	7
23	Measuring the diameter of rising gas bubbles by means of the ultrasound transit time technique. Nuclear Engineering and Design, 2015, 291, 64-70.	1.7	13
24	Dynamics of Single Hydrogen Bubbles at a Platinum Microelectrode. Langmuir, 2015, 31, 8184-8193.	3.5	93
25	Magnetic separation of Dy(III) ions from homogeneous aqueous solutions. Applied Physics Letters, 2014, 105, .	3.3	34
26	Magnetic Separation of Paramagnetic Ions From Initially Homogeneous Solutions. IEEE Transactions on Magnetics, 2014, 50, 1-4.	2.1	9
27	Severe corrosion behavior of Fe78Si9B13 glassy alloy under magnetic field. Journal of Non-Crystalline Solids, 2014, 392-393, 51-58.	3.1	17
28	The initial transient of natural convection during copper electrolysis in the presence of an opposing Lorentz force: Current dependence. European Physical Journal: Special Topics, 2013, 220, 303-312.	2.6	12
29	On the homogenization of the thickness of Cu deposits by means of MHD convection within small dimension cells. Electrochemistry Communications, 2013, 36, 80-83.	4.7	15
30	Structured electrodeposition in magnetic gradient fields. European Physical Journal: Special Topics, 2013, 220, 287-302.	2.6	39
31	Design and Validation of a Bioreactor for Simulating the Cardiac Niche: A System Incorporating Cyclic Stretch, Electrical Stimulation, and Constant Perfusion. Tissue Engineering - Part A, 2013, 19, 403-414.	3.1	46
32	Enrichment of Paramagnetic Ions from Homogeneous Solutions in Inhomogeneous Magnetic Fields. Journal of Physical Chemistry Letters, 2012, 3, 3559-3564.	4.6	33
33	Lorentz-force-driven convection during copper magnetoelectrolysis in the presence of a supporting buoyancy force. Electrochimica Acta, 2012, 69, 209-219.	5.2	32
34	Numerical simulation of the onset of mass transfer and convection in copper electrolysis subjected to a magnetic field. Russian Journal of Electrochemistry, 2012, 48, 682-691.	0.9	13
35	How to obtain structured metal deposits from diamagnetic ions in magnetic gradient fields?. Electrochemistry Communications, 2011, 13, 946-950.	4.7	29
36	Oscillatory Lorentz-force-driven flows during potentiostatic current oscillations in magnetic fields. Electrochemistry Communications, 2010, 12, 1576-1580.	4.7	13

XUEGENG YANG

#	Article	IF	CITATIONS
37	Pulse magnetoelectrolysis. Electrochemistry Communications, 2009, 11, 318-322.	4.7	10
38	On the decay of the Lorentz-force-driven convection in vertical concentration stratification during magnetoelectrolysis. Electrochimica Acta, 2009, 54, 7056-7065.	5.2	17
39	The concentration field during transient natural convection between vertical electrodes in a small-aspect-ratio cell. Journal of Electroanalytical Chemistry, 2008, 613, 97-107.	3.8	27
40	Mapping the transient concentration field within the diffusion layer by use of the digital holographic reconstruction. Electrochemistry Communications, 2008, 10, 392-396.	4.7	24
41	The start-up of natural convection during copper electrolysis in the presence of an opposing Lorentz force. Electrochimica Acta, 2008, 54, 352-359.	5.2	24
42	An investigation on general corrosion and pitting of iron with the in-line digital holography. Electrochimica Acta, 2008, 53, 3109-3119.	5.2	23
43	Investigation of the pitting of aluminum induced by chloride ions by holographic microphotography. Journal of the Serbian Chemical Society, 2008, 73, 561-568.	0.8	6
44	Protection of self-assembled monolayers formed from triethyl phosphate and mixed self-assembled monolayers from triethyl phosphate and cetyltrimethyl ammonium bromide for copper against corrosion. Electrochimica Acta, 2006, 52, 108-113.	5.2	35
45	Digital holographic study of the effect of magnetic field on the potentiostatic current oscillations of iron in sulfuric acid. Journal of Electroanalytical Chemistry, 2006, 586, 173-179.	3.8	17
46	Effect of microenvironment on the potentiostatic-current oscillation of iron electrode in sulfuric acid solution. Russian Journal of Electrochemistry, 2006, 42, 491-496.	0.9	3
47	Application of in situ digital holography to the study of the effect of a magnetic field on the anodic dissolution of iron in thichloroacetic acid. Journal of the Serbian Chemical Society, 2006, 71, 67-73.	0.8	4
48	Simple method for preparation of cubic Ag nanoparticles and their self-assembled films. Thin Solid Films, 2004, 460, 78-82.	1.8	33
49	Pitting corrosion induced current oscillations during electrodissolution of Al in HClO4 solutions. Journal of Electroanalytical Chemistry, 2004, 572, 41-49.	3.8	11
50	A convenient phase transfer route for Ag nanoparticles. Physica E: Low-Dimensional Systems and Nanostructures, 2004, 23, 92-96.	2.7	27
51	In-line digital holography for the study of dynamic processes of electrochemical reaction. Electrochemistry Communications, 2004, 6, 643-647.	4.7	33
52	Investigation of chloride-induced pitting processes of iron in the H2SO4 solution by the digital holography. Electrochemistry Communications, 2004, 6, 1009-1015.	4.7	26
53	Synthesis of copper nanorods using electrochemical methods. Journal of the Serbian Chemical Society, 2003, 68, 843-847.	0.8	31
54	Investigation into Designed Current Oscillations during Electrodissolution in Sulfuric Acid Solution. Journal of the Electrochemical Society, 2002, 149, B174.	2.9	17