T Deirdre Hollingsworth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/460596/publications.pdf Version: 2024-02-01

		71102	33894
154	11,511	41	99
papers	citations	h-index	g-index
175 all docs	175 docs citations	175 times ranked	16076 citing authors

#	Article	IF	CITATIONS
1	Statistical methods for linking geostatistical maps and transmission models: Application to lymphatic filariasis in East Africa. Spatial and Spatio-temporal Epidemiology, 2022, 41, 100391.	1.7	7
2	Commentary on the use of the reproduction number <i>R</i> during the COVID-19 pandemic. Statistical Methods in Medical Research, 2022, 31, 1675-1685.	1.5	18
3	Determining the optimal strategies to achieve elimination of transmission for Schistosoma mansoni. Parasites and Vectors, 2022, 15, 55.	2.5	7
4	Impact of intensified control on visceral leishmaniasis in a highly-endemic district of Bihar, India: an interrupted time series analysis. Epidemics, 2022, 39, 100562.	3.0	1
5	Developments in statistical inference when assessing spatiotemporal disease clustering with the tau statistic. Spatial Statistics, 2021, 42, 100438.	1.9	3
6	Predicted Impact of COVID-19 on Neglected Tropical Disease Programs and the Opportunity for Innovation. Clinical Infectious Diseases, 2021, 72, 1463-1466.	5.8	62
7	Towards a comprehensive research and development plan to support the control, elimination and eradication of neglected tropical diseases. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2021, 115, 196-199.	1.8	4
8	Delays in lymphatic filariasis elimination programmes due to COVID-19, and possible mitigation strategies. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2021, 115, 261-268.	1.8	15
9	Disruptions to schistosomiasis programmes due to COVID-19: an analysis of potential impact and mitigation strategies. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2021, 115, 236-244.	1.8	24
10	Modelling trachoma post-2020: opportunities for mitigating the impact of COVID-19 and accelerating progress towards elimination. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2021, 115, 213-221.	1.8	17
11	Evaluating the potential impact of interruptions to neglected tropical disease programmes due to COVID-19. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2021, 115, 201-204.	1.8	15
12	Engagement and adherence trade-offs for SARS-CoV-2 contact tracing. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200270.	4.0	12
13	Towards Evidence-based Control of Opisthorchis viverrini. Trends in Parasitology, 2021, 37, 370-380.	3.3	22
14	Epidemic interventions: insights from classic results. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200263.	4.0	9
15	Strengthening data collection for neglected tropical diseases: What data are needed for models to better inform tailored intervention programmes?. PLoS Neglected Tropical Diseases, 2021, 15, e0009351.	3.0	10
16	Dynamics of SARS-CoV-2 with waning immunity in the UK population. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200274.	4.0	31
17	Forecasting Trachoma Control and Identifying Transmission-Hotspots. Clinical Infectious Diseases, 2021, 72, S134-S139.	5.8	1
18	Maps and metrics of insecticide-treated net access, use, and nets-per-capita in Africa from 2000-2020. Nature Communications, 2021, 12, 3589.	12.8	57

#	Article	IF	CITATIONS
19	Sustainable Surveillance of Neglected Tropical Diseases for the Post-Elimination Era. Clinical Infectious Diseases, 2021, 72, S210-S216.	5.8	14
20	SARS-CoV-2 antigen testing: weighing the false positives against the costs of failing to control transmission. Lancet Respiratory Medicine,the, 2021, 9, 685-687.	10.7	14
21	Modelling the Impact of Vector Control on Lymphatic Filariasis Programs: Current Approaches and Limitations. Clinical Infectious Diseases, 2021, 72, S152-S157.	5.8	5
22	What Can Modeling Tell Us About Sustainable End Points for Neglected Tropical Diseases?. Clinical Infectious Diseases, 2021, 72, S129-S133.	5.8	5
23	Maintaining Low Prevalence of Schistosoma mansoni: Modeling the Effect of Less Frequent Treatment. Clinical Infectious Diseases, 2021, 72, S140-S145.	5.8	5
24	How modelling can help steer the course set by the World Health Organization 2021-2030 roadmap on neglected tropical diseases. Gates Open Research, 2021, 5, 112.	1.1	4
25	Contact tracing is an imperfect tool for controlling COVID-19 transmission and relies on population adherence. Nature Communications, 2021, 12, 5412.	12.8	41
26	Implications of the COVID-19 pandemic in eliminating trachoma as a public health problem. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2021, 115, 222-228.	1.8	14
27	SCHISTOX: An individual based model for the epidemiology and control of schistosomiasis. Infectious Disease Modelling, 2021, 6, 438-447.	1.9	9
28	The SARS-CoV-2 pandemic: remaining uncertainties in our understanding of the epidemiology and transmission dynamics of the virus, and challenges to be overcome. Interface Focus, 2021, 11, 20210008.	3.0	24
29	Gender-related differences in prevalence, intensity and associated risk factors of Schistosoma infections in Africa: A systematic review and meta-analysis. PLoS Neglected Tropical Diseases, 2021, 15, e0009083.	3.0	22
30	Challenges in evaluating risks and policy options around endemic establishment or elimination of novel pathogens. Epidemics, 2021, 37, 100507.	3.0	4
31	Integrating geostatistical maps and infectious disease transmission models using adaptive multiple importance sampling. Annals of Applied Statistics, 2021, 15, .	1.1	4
32	Achieving Elimination as a Public Health Problem for Schistosoma mansoni and S. haematobium: When Is Community-Wide Treatment Required?. Journal of Infectious Diseases, 2020, 221, S525-S530.	4.0	26
33	Defining a prevalence level to describe the elimination of Lymphatic Filariasis (LF) transmission and designing monitoring & evaluating (M&E) programmes post the cessation of mass drug administration (MDA). PLoS Neglected Tropical Diseases, 2020, 14, e0008644.	3.0	12
34	The impact of mass drug administration on Schistosoma haematobium infection: what is required to achieve morbidity control and elimination?. Parasites and Vectors, 2020, 13, 554.	2.5	17
35	COVID-19 spread in the UK: the end of the beginning?. Lancet, The, 2020, 396, 587-590.	13.7	66
36	Key questions for modelling COVID-19 exit strategies. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20201405.	2.6	106

#	Article	IF	CITATIONS
37	Inferring transmission trees to guide targeting of interventions against visceral leishmaniasis and post–kala-azar dermal leishmaniasis. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 25742-25750.	7.1	19
38	Trachoma Prevalence After Discontinuation of Mass Azithromycin Distribution. Journal of Infectious Diseases, 2020, 221, S519-S524.	4.0	14
39	Policy implications of the potential use of a novel vaccine to prevent infection with Schistosoma mansoni with or without mass drug administration. Vaccine, 2020, 38, 4379-4386.	3.8	12
40	When, Who, and How to Sample: Designing Practical Surveillance for 7 Neglected Tropical Diseases as We Approach Elimination. Journal of Infectious Diseases, 2020, 221, S499-S502.	4.0	11
41	Elimination or Resurgence: Modelling Lymphatic Filariasis After Reaching the 1% Microfilaremia Prevalence Threshold. Journal of Infectious Diseases, 2020, 221, S503-S509.	4.0	15
42	The use of mixture density networks in the emulation of complex epidemiological individual-based models. PLoS Computational Biology, 2020, 16, e1006869.	3.2	18
43	How will country-based mitigation measures influence the course of the COVID-19 epidemic?. Lancet, The, 2020, 395, 931-934.	13.7	2,738
44	Efficacy of contact tracing for the containment of the 2019 novel coronavirus (COVID-19). Journal of Epidemiology and Community Health, 2020, 74, jech-2020-214051.	3.7	245
45	How universal does universal test and treat have to be?. Lancet HIV,the, 2020, 7, e306-e308.	4.7	6
46	Responsible modelling: Unit testing for infectious disease epidemiology. Epidemics, 2020, 33, 100425.	3.0	7
47	Guidelines for multi-model comparisons of the impact of infectious disease interventions. BMC Medicine, 2019, 17, 163.	5.5	39
48	Vaccination or mass drug administration against schistosomiasis: a hypothetical cost-effectiveness modelling comparison. Parasites and Vectors, 2019, 12, 499.	2.5	8
49	Evaluating the Evidence for Lymphatic FilariasisÂElimination. Trends in Parasitology, 2019, 35, 860-869.	3.3	15
50	Community-based testing of migrants for infectious diseases (COMBAT-ID): impact, acceptability and cost-effectiveness of identifying infectious diseases among migrants in primary care: protocol for an interrupted time-series, qualitative and health economic analysis. BMJ Open, 2019, 9, e029188.	1.9	9
51	Mass deworming for improving health and cognition of children in endemic helminth areas: A systematic review and individual participant data network metaâ€analysis. Campbell Systematic Reviews, 2019, 15, e1058.	3.0	3
52	Deworming children for soil-transmitted helminths in low and middle-income countries: systematic review and individual participant data network meta-analysis. Journal of Development Effectiveness, 2019, 11, 288-306.	0.8	5
53	Insights from quantitative and mathematical modelling on the proposed WHO 2030 goal for schistosomiasis. Gates Open Research, 2019, 3, 1517.	1.1	9
54	Insights from quantitative and mathematical modelling on the proposed WHO 2030 goal for schistosomiasis. Gates Open Research, 2019, 3, 1517.	1.1	11

#	Article	IF	CITATIONS
55	The roadmap towards elimination of lymphatic filariasis by 2030: insights from quantitative and mathematical modelling. Gates Open Research, 2019, 3, 1538.	1.1	18
56	Insights from mathematical modelling and quantitative analysis on the proposed WHO 2030 targets for visceral leishmaniasis on the Indian subcontinent. Gates Open Research, 2019, 3, 1651.	1.1	5
57	Understanding heterogeneities in mosquito-bite exposure and infection distributions for the elimination of lymphatic filariasis. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20172253.	2.6	21
58	Economic Evaluations of Mass Drug Administration: The Importance of Economies of Scale and Scope. Clinical Infectious Diseases, 2018, 66, 1298-1303.	5.8	26
59	Investment in child and adolescent health and development: key messages from Disease Control Priorities , 3rd Edition. Lancet, The, 2018, 391, 687-699.	13.7	156
60	Diagnosing risk factors alongside mass drug administration using serial diagnostic tests—which test first?. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2018, 112, 342-348.	1.8	0
61	Identifying English Practices that Are High Antibiotic Prescribers Accounting for Comorbidities and Other Legitimate Medical Reasons for Variation. EClinicalMedicine, 2018, 6, 36-41.	7.1	19
62	Age trends in asymptomatic and symptomatic Leishmania donovani infection in the Indian subcontinent: A review and analysis of data from diagnostic and epidemiological studies. PLoS Neglected Tropical Diseases, 2018, 12, e0006803.	3.0	26
63	Quantifying the value of surveillance data for improving model predictions of lymphatic filariasis elimination. PLoS Neglected Tropical Diseases, 2018, 12, e0006674.	3.0	11
64	The role of case proximity in transmission of visceral leishmaniasis in a highly endemic village in Bangladesh. PLoS Neglected Tropical Diseases, 2018, 12, e0006453.	3.0	23
65	Optimising sampling regimes and data collection to inform surveillance for trachoma control. PLoS Neglected Tropical Diseases, 2018, 12, e0006531.	3.0	12
66	Policy Lessons From Quantitative Modeling of Leprosy. Clinical Infectious Diseases, 2018, 66, S281-S285.	5.8	14
67	Assessing Strategies Against Gambiense Sleeping Sickness Through Mathematical Modeling. Clinical Infectious Diseases, 2018, 66, S286-S292.	5.8	37
68	Are Alternative Strategies Required to Accelerate the Global Elimination of Lymphatic Filariasis? Insights From Mathematical Models. Clinical Infectious Diseases, 2018, 66, S260-S266.	5.8	27
69	Models of Trachoma Transmission and Their Policy Implications: From Control to Elimination. Clinical Infectious Diseases, 2018, 66, S275-S280.	5.8	28
70	The impact of seasonality on the dynamics and control of Ascaris lumbricoides infections. Journal of Theoretical Biology, 2018, 453, 96-107.	1.7	9
71	Policy Recommendations From Transmission Modeling for the Elimination of Visceral Leishmaniasis in the Indian Subcontinent. Clinical Infectious Diseases, 2018, 66, S301-S308.	5.8	34
72	Complex interactions in soil-transmitted helminth co-infections from a cross-sectional study in Sri Lanka. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2018, 112, 397-404.	1.8	9

#	Article	IF	CITATIONS
73	Economic evaluations of lymphatic filariasis interventions: a systematic review and research needs. Parasites and Vectors, 2018, 11, 75.	2.5	30
74	Understanding the relationship between egg- and antigen-based diagnostics of Schistosoma mansoni infection pre- and post-treatment in Uganda. Parasites and Vectors, 2018, 11, 21.	2.5	31
75	Targeted Treatment of Yaws With Household Contact Tracing: How Much Do We Miss?. American Journal of Epidemiology, 2018, 187, 837-844.	3.4	14
76	Counting Down the 2020 Goals for 9 Neglected Tropical Diseases: What Have We Learned From Quantitative Analysis and Transmission Modeling?. Clinical Infectious Diseases, 2018, 66, S237-S244.	5.8	26
77	Kernel-density estimation and approximate Bayesian computation for flexible epidemiological model fitting in Python. Epidemics, 2018, 25, 80-88.	3.0	9
78	Seasonally timed treatment programs for Ascaris lumbricoides to increase impact—An investigation using mathematical models. PLoS Neglected Tropical Diseases, 2018, 12, e0006195.	3.0	15
79	100 Years of Mass Deworming Programmes: A Policy Perspective From the World Bank's Disease Control Priorities Analyses. Advances in Parasitology, 2018, 100, 127-154.	3.2	19
80	Elimination of visceral leishmaniasis in the Indian subcontinent: a comparison of predictions from three transmission models. Epidemics, 2017, 18, 67-80.	3.0	49
81	Measuring and modelling the effects of systematic non-adherence to mass drug administration. Epidemics, 2017, 18, 56-66.	3.0	72
82	Learning from multi-model comparisons: Collaboration leads to insights, but limitations remain. Epidemics, 2017, 18, 1-3.	3.0	22
83	Economic Considerations for Moving beyond the Kato-Katz Technique for Diagnosing Intestinal Parasites As We Move Towards Elimination. Trends in Parasitology, 2017, 33, 435-443.	3.3	54
84	Predicting lymphatic filariasis transmission and elimination dynamics using a multi-model ensemble framework. Epidemics, 2017, 18, 16-28.	3.0	40
85	Effectiveness of a triple-drug regimen for global elimination of lymphatic filariasis: a modelling study. Lancet Infectious Diseases, The, 2017, 17, 451-458.	9.1	86
86	A strengthening evidence-base for mass deworming, but questions remain. Lancet, The, 2017, 389, 231-233.	13.7	4
87	Cost-effectiveness of screening for HIV in primary care: a health economics modelling analysis. Lancet HIV,the, 2017, 4, e465-e474.	4.7	50
88	Innovative tools and approaches to end the transmission of Mycobacterium leprae. Lancet Infectious Diseases, The, 2017, 17, e298-e305.	9.1	42
89	Variations in visceral leishmaniasis burden, mortality and the pathway to care within Bihar, India. Parasites and Vectors, 2017, 10, 601.	2.5	38
90	Making Transmission Models Accessible to End-Users: The Example of TRANSFIL. PLoS Neglected Tropical Diseases, 2017, 11, e0005206.	3.0	12

#	Article	IF	CITATIONS
91	Mass Deworming Programs in Middle Childhood and Adolescence. , 2017, , 165-182.		11
92	The Role of More Sensitive Helminth Diagnostics in Mass Drug Administration Campaigns. Advances in Parasitology, 2016, 94, 343-392.	3.2	32
93	Development and evaluation of a Markov model to predict changes in schistosomiasis prevalence in response to praziquantel treatment: a case study of Schistosoma mansoni in Uganda and Mali. Parasites and Vectors, 2016, 9, 543.	2.5	5
94	The Dynamics of Ascaris lumbricoides Infections. Bulletin of Mathematical Biology, 2016, 78, 815-833.	1.9	11
95	Analysis of the population-level impact of co-administering ivermectin with albendazole or mebendazole for the control and elimination of Trichuris trichiura. Parasite Epidemiology and Control, 2016, 1, 177-187.	1.8	35
96	Cost-effectiveness of scaling up mass drug administration for the control of soil-transmitted helminths: a comparison of cost function and constant costs analyses. Lancet Infectious Diseases, The, 2016, 16, 838-846.	9.1	49
97	Key traveller groups of relevance to spatial malaria transmission: a survey of movement patterns in four sub-Saharan African countries. Malaria Journal, 2016, 15, 200.	2.3	43
98	Understanding the transmission dynamics of Leishmania donovani to provide robust evidence for interventions to eliminate visceral leishmaniasis in Bihar, India. Parasites and Vectors, 2016, 9, 25.	2.5	55
99	Understanding the relationship between prevalence of microfilariae and antigenaemia using a model of lymphatic filariasis infection. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2016, 110, 118-124.	1.8	14
100	Health-seeking behaviour, diagnostics and transmission dynamics in the control of visceral leishmaniasis in the Indian subcontinent. Nature, 2015, 528, S102-S108.	27.8	62
101	Interrupting transmission of soil-transmitted helminths: a study protocol for cluster randomised trials evaluating alternative treatment strategies and delivery systems in Kenya. BMJ Open, 2015, 5, e008950.	1.9	56
102	Fit for purpose: do we have the right tools to sustain NTD elimination?. BMC Proceedings, 2015, 9, S5.	1.6	5
103	Infectious disease and health systems modelling for local decision making to control neglected tropical diseases. BMC Proceedings, 2015, 9, S6.	1.6	15
104	Mass Drug Administration and beyond: how can we strengthen health systems to deliver complex interventions to eliminate neglected tropical diseases?. BMC Proceedings, 2015, 9, S7.	1.6	5
105	Quantitative analyses and modelling to support achievement of the 2020 goals for nine neglected tropical diseases. Parasites and Vectors, 2015, 8, 630.	2.5	80
106	Modelling strategies to break transmission of lymphatic filariasis - aggregation, adherence and vector competence greatly alter elimination. Parasites and Vectors, 2015, 8, 547.	2.5	65
107	Modelling the distribution and transmission intensity of lymphatic filariasis in sub-Saharan Africa prior to scaling up interventions: integrated use of geostatistical and mathematical modelling. Parasites and Vectors, 2015, 8, 560.	2.5	62
108	An economic evaluation of expanding hookworm control strategies to target the whole community. Parasites and Vectors, 2015, 8, 570.	2.5	44

#	Article	IF	CITATIONS
109	Should the Goal for the Treatment of Soil Transmitted Helminth (STH) Infections Be Changed from Morbidity Control in Children to Community-Wide Transmission Elimination?. PLoS Neglected Tropical Diseases, 2015, 9, e0003897.	3.0	108
110	Bihar's Pioneering School-Based Deworming Programme: Lessons Learned in Deworming over 17 Million Indian School-Age Children in One Sustainable Campaign. PLoS Neglected Tropical Diseases, 2015, 9, e0004106.	3.0	11
111	High Transmissibility During Early HIV Infection Among Men Who Have Sex With Men—San Francisco, California: Table 1 Journal of Infectious Diseases, 2015, 211, 1757-1760.	4.0	23
112	Gradual acquisition of immunity to severe malaria with increasing exposure. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20142657.	2.6	91
113	Modeling infectious disease dynamics in the complex landscape of global health. Science, 2015, 347, aaa4339.	12.6	492
114	Seven challenges for modelling indirect transmission: Vector-borne diseases, macroparasites and neglected tropical diseases. Epidemics, 2015, 10, 16-20.	3.0	43
115	Uniting mathematics and biology for control of visceral leishmaniasis. Trends in Parasitology, 2015, 31, 251-259.	3.3	33
116	Brief Report. Journal of Acquired Immune Deficiency Syndromes (1999), 2015, 68, 594-598.	2.1	8
117	Seven challenges in modeling vaccine preventable diseases. Epidemics, 2015, 10, 11-15.	3.0	31
118	Simple Approximations for Epidemics with Exponential and Fixed Infectious Periods. Bulletin of Mathematical Biology, 2015, 77, 1539-1555.	1.9	7
119	Cost and cost-effectiveness of soil-transmitted helminth treatment programmes: systematic review and research needs. Parasites and Vectors, 2015, 8, 355.	2.5	58
120	MDA helminth control: more questions than answers. The Lancet Global Health, 2015, 3, e583-e584.	6.3	5
121	Quantification of the natural history of visceral leishmaniasis and consequences for control. Parasites and Vectors, 2015, 8, 521.	2.5	41
122	Six challenges in the eradication of infectious diseases. Epidemics, 2015, 10, 97-101.	3.0	35
123	Seven challenges for model-driven data collection in experimental and observational studies. Epidemics, 2015, 10, 78-82.	3.0	35
124	Modeling the Interruption of the Transmission of Soil-Transmitted Helminths by Repeated Mass Chemotherapy of School-Age Children. PLoS Neglected Tropical Diseases, 2014, 8, e3323.	3.0	37
125	The coverage and frequency of mass drug administration required to eliminate persistent transmission of soil-transmitted helminths. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130435.	4.0	156
126	Virulence and Pathogenesis of HIV-1 Infection: An Evolutionary Perspective. Science, 2014, 343, 1243727.	12.6	215

#	Article	IF	CITATIONS
127	Risk factors for UK Plasmodium falciparum cases. Malaria Journal, 2014, 13, 298.	2.3	9
128	Can chemotherapy alone eliminate the transmission of soil transmitted helminths?. Parasites and Vectors, 2014, 7, 266.	2.5	117
129	Transmission Dynamics of Ascaris lumbricoides $\hat{a} \in$ "Theory and Observation. , 2013, , 231-262.		4
130	How Effective Is School-Based Deworming for the Community-Wide Control of Soil-Transmitted Helminths?. PLoS Neglected Tropical Diseases, 2013, 7, e2027.	3.0	128
131	Heterosexual HIV-1 Infectiousness and Antiretroviral Use. Epidemiology, 2013, 24, 110-121.	2.7	79
132	Optimisation of mass chemotherapy to control soil-transmitted helminth infection. Lancet, The, 2012, 379, 289-290.	13.7	43
133	The Potential Contribution of Mass Treatment to the Control of Plasmodium falciparum Malaria. PLoS ONE, 2011, 6, e20179.	2.5	121
134	Mitigation Strategies for Pandemic Influenza A: Balancing Conflicting Policy Objectives. PLoS Computational Biology, 2011, 7, e1001076.	3.2	92
135	Reducing Plasmodium falciparum Malaria Transmission in Africa: A Model-Based Evaluation of Intervention Strategies. PLoS Medicine, 2010, 7, e1000324.	8.4	451
136	HIV-1 Transmitting Couples Have Similar Viral Load Set-Points in Rakai, Uganda. PLoS Pathogens, 2010, 6, e1000876.	4.7	88
137	Interpretation of correlations in setpoint viral load in transmitting couples. Aids, 2010, 24, 2596-2597.	2.2	9
138	27 years of the HIV epidemic amongst men having sex with men in the Netherlands: An in depth mathematical model-based analysis. Epidemics, 2010, 2, 66-79.	3.0	49
139	Modelling the between-host evolution of set-point viral load in HIV infection. International Journal of Infectious Diseases, 2010, 14, e79.	3.3	0
140	Pandemic Potential of a Strain of Influenza A (H1N1): Early Findings. Science, 2009, 324, 1557-1561.	12.6	1,665
141	Response—Influenza. Science, 2009, 325, 1072-1073.	12.6	2
142	Controlling infectious disease outbreaks: Lessons from mathematical modelling. Journal of Public Health Policy, 2009, 30, 328-341.	2.0	32
143	Variational data assimilation with epidemic models. Journal of Theoretical Biology, 2009, 258, 591-602.	1.7	37
144	Estimating the public health impact of the effect of herpes simplex virus suppressive therapy on plasma HIV-1 viral load. Aids, 2009, 23, 1005-1013.	2.2	17

#	Article	IF	CITATIONS
145	6.16 Mathematical models of transmission and control. , 2009, , .		4
146	HIV-1 Transmission, by Stage of Infection. Journal of Infectious Diseases, 2008, 198, 687-693.	4.0	575
147	A resurgent HIV-1 epidemic among men who have sex with men in the era of potent antiretroviral therapy. Aids, 2008, 22, 1071-1077.	2.2	153
148	Variation in HIV-1 set-point viral load: Epidemiological analysis and an evolutionary hypothesis. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 17441-17446.	7.1	363
149	Frequent Travelers and Rate of Spread of Epidemics. Emerging Infectious Diseases, 2007, 13, 1288-1294.	4.3	70
150	Will travel restrictions control the international spread of pandemic influenza?. Nature Medicine, 2006, 12, 497-499.	30.7	200
151	A comparison of methods for trend estimation. Applied Economics Letters, 1999, 6, 103-109.	1.8	36
152	Health economic analyses of latent tuberculosis infection screening and preventive treatment among people living with HIV in lower tuberculosis incidence settings: a systematic review. Wellcome Open Research, 0, 6, 51.	1.8	0
153	Estimating HIV, HCV and HSV2 incidence from emergency department serosurvey. Gates Open Research, 0, 5, 116.	1.1	0
154	How modelling can help steer the course set by the World Health Organization 2021-2030 roadmap on neglected tropical diseases. Gates Open Research, 0, 5, 112.	1.1	1