
Sara Vieira-Silva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4605818/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structure and function of the global ocean microbiome. Science, 2015, 348, 1261359.	12.6	2,137
2	Population-level analysis of gut microbiome variation. Science, 2016, 352, 560-564.	12.6	1,716
3	Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature, 2015, 528, 262-266.	27.8	1,627
4	Human gut microbes impact host serum metabolome and insulin sensitivity. Nature, 2016, 535, 376-381.	27.8	1,506
5	Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science, 2016, 352, 565-569.	12.6	1,398
6	Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study. Nature Medicine, 2019, 25, 1096-1103.	30.7	1,281
7	The neuroactive potential of the human gut microbiota in quality of life and depression. Nature Microbiology, 2019, 4, 623-632.	13.3	1,206
8	How informative is the mouse for human gut microbiota research?. DMM Disease Models and Mechanisms, 2015, 8, 1-16.	2.4	990
9	Quantitative microbiome profiling links gut community variation to microbial load. Nature, 2017, 551, 507-511.	27.8	791
10	Stool consistency is strongly associated with gut microbiota richness and composition, enterotypes and bacterial growth rates. Gut, 2016, 65, 57-62.	12.1	737
11	Large-scale association analyses identify host factors influencing human gut microbiome composition. Nature Genetics, 2021, 53, 156-165.	21.4	676
12	Prebiotic inulin-type fructans induce specific changes in the human gut microbiota. Gut, 2017, 66, 1968-1974.	12.1	370
13	Primary sclerosing cholangitis is characterised by intestinal dysbiosis independent from IBD. Gut, 2016, 65, 1681-1689.	12.1	312
14	The Systemic Imprint of Growth and Its Uses in Ecological (Meta)Genomics. PLoS Genetics, 2010, 6, e1000808.	3.5	286
15	Statin therapy is associated with lower prevalence of gut microbiota dysbiosis. Nature, 2020, 581, 310-315.	27.8	283
16	Species–function relationships shape ecological properties of the human gut microbiome. Nature Microbiology, 2016, 1, 16088.	13.3	279
17	Heritable components of the human fecal microbiome are associated with visceral fat. Genome Biology, 2016, 17, 189.	8.8	183
18	Quantitative microbiome profiling disentangles inflammation- and bile duct obstruction-associated microbiota alterations across PSC/IBD diagnoses. Nature Microbiology, 2019, 4, 1826-1831.	13.3	149

SARA VIEIRA-SILVA

#	Article	IF	CITATIONS
19	Population-level analysis of <i>Blastocystis</i> subtype prevalence and variation in the human gut microbiota. Gut, 2019, 68, 1180-1189.	12.1	149
20	Genome-wide associations of human gut microbiome variation and implications for causal inference analyses. Nature Microbiology, 2020, 5, 1079-1087.	13.3	144
21	Nlrp6- and ASC-Dependent Inflammasomes Do Not Shape the Commensal Gut Microbiota Composition. Immunity, 2017, 47, 339-348.e4.	14.3	141
22	Microbiology Meets Big Data: The Case of Gut Microbiota–Derived Trimethylamine. Annual Review of Microbiology, 2015, 69, 305-321.	7.3	133
23	A low-gluten diet induces changes in the intestinal microbiome of healthy Danish adults. Nature Communications, 2018, 9, 4630.	12.8	124
24	Imidazole propionate is increased in diabetes and associated with dietary patterns and altered microbial ecology. Nature Communications, 2020, 11, 5881.	12.8	122
25	A20 controls intestinal homeostasis through cell-specific activities. Nature Communications, 2014, 5, 5103.	12.8	109
26	Combinatorial, additive and dose-dependent drug–microbiome associations. Nature, 2021, 600, 500-505.	27.8	102
27	Microbiome and metabolome features of the cardiometabolic disease spectrum. Nature Medicine, 2022, 28, 303-314.	30.7	102
28	<i>Dysosmobacter welbionis</i> is a newly isolated human commensal bacterium preventing diet-induced obesity and metabolic disorders in mice. Gut, 2022, 71, 534-543.	12.1	95
29	Novel insights into the genetically obese (ob/ob) and diabetic (db/db) mice: two sides of the same coin. Microbiome, 2021, 9, 147.	11.1	92
30	Richness and ecosystem development across faecal snapshots of the gut microbiota. Nature Microbiology, 2018, 3, 526-528.	13.3	81
31	Towards biome-specific analysis of meta-omics data. ISME Journal, 2016, 10, 1025-1028.	9.8	72
32	Faecal Metaproteomic Analysis Reveals a Personalized and Stable Functional Microbiome and Limited Effects of a Probiotic Intervention in Adults. PLoS ONE, 2016, 11, e0153294.	2.5	70
33	A synthesis of bacterial and archaeal phenotypic trait data. Scientific Data, 2020, 7, 170.	5.3	59
34	Human and preclinical studies of the host–gut microbiome co-metabolite hippurate as a marker and mediator of metabolic health. Gut, 2021, 70, 2105-2114.	12.1	58
35	Impairment of gut microbial biotin metabolism and host biotin status in severe obesity: effect of biotin and prebiotic supplementation on improved metabolism. Gut, 2022, 71, 2463-2480.	12.1	53
36	Successional Stages in Infant Gut Microbiota Maturation. MBio, 2021, 12, e0185721.	4.1	48

3

SARA VIEIRA-SILVA

#	Article	IF	CITATIONS
37	Prebiotic Wheat Bran Fractions Induce Specific Microbiota Changes. Frontiers in Microbiology, 2018, 9, 31.	3.5	45
38	Association of hemicellulose- and pectin-modifying gene expression with Eucalyptus globulus secondary growth. Plant Physiology and Biochemistry, 2011, 49, 873-881.	5.8	40
39	An Assessment of the Impacts of Molecular Oxygen on the Evolution of Proteomes. Molecular Biology and Evolution, 2008, 25, 1931-1942.	8.9	37
40	Meta-omics in Inflammatory Bowel Disease Research: Applications, Challenges, and Guidelines. Journal of Crohn's and Colitis, 2016, 10, 735-746.	1.3	37
41	Gut microbiota dynamics and uraemic toxins: one size does not fit all. Gut, 2019, 68, 2257.1-2260.	12.1	37
42	Immune Subversion and Quorum-Sensing Shape the Variation in Infectious Dose among Bacterial Pathogens. PLoS Pathogens, 2012, 8, e1002503.	4.7	36
43	Review article: how the intestinal microbiota may reflect disease activity and influence therapeutic outcome in inflammatory bowel disease. Alimentary Pharmacology and Therapeutics, 2020, 52, 1453-1468.	3.7	36
44	The human microbiome in health and disease: hype or hope. Acta Clinica Belgica, 2019, 74, 53-64.	1.2	34
45	Variation and transmission of the human gut microbiota across multiple familial generations. Nature Microbiology, 2022, 7, 87-96.	13.3	32
46	The reproductive microbiome – clinical practice recommendations for fertility specialists. Reproductive BioMedicine Online, 2020, 41, 443-453.	2.4	30
47	Benchmarking microbiome transformations favors experimental quantitative approaches to address compositionality and sampling depth biases. Nature Communications, 2021, 12, 3562.	12.8	30
48	The virota and its transkingdom interactions in the healthy infant gut. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2114619119.	7.1	30
49	Exploring the relationship between the gut microbiome and mental health outcomes in a posttraumatic stress disorder cohort relative to trauma-exposed controls. European Neuropsychopharmacology, 2022, 56, 24-38.	0.7	26
50	No evidence for elemental-based streamlining of prokaryotic genomes. Trends in Ecology and Evolution, 2010, 25, 319-320.	8.7	25
51	Effect of obesity on gastrointestinal transit, pressure and pH using a wireless motility capsule. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 167, 1-8.	4.3	16
52	Water activity does not shape the microbiota in the human colon. Gut, 2017, 66, 1865-1866.	12.1	9
53	Investment in rapid growth shapes the evolutionary rates of essential proteins. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 20030-20035.	7.1	7
54	Therapeutic Manipulation of the Gut Microbiota Through Diet to Reduce Intestinal Inflammation: Results from the FIT Trial. Gastroenterology, 2017, 152, S1.	1.3	5

SARA VIEIRA-SILVA

#	Article	IF	CITATIONS
55	Specific contributions of segmental transit times to gut microbiota composition. Gut, 2021, , gutjnl-2021-325916.	12.1	4
56	Practical guidelines for gut microbiome analysis in microbiota-gut-brain axis research. Behavioral and Brain Sciences, 2019, 42, .	0.7	1
57	Tu1713 Host-Microbiome Interactions in Primary Sclerosing Cholangitis. Gastroenterology, 2016, 150, S927-S928.	1.3	0
58	Su1909 Genetic Risk for Crohn's Disease has Little Impact on Intestinal Microbiota Composition. Gastroenterology, 2016, 150, S585-S586.	1.3	0
59	Profiling of the Fecal Microbiota and Metabolome in Patients with Inflammatory Bowel Disease and their Unaffected Relatives. Gastroenterology, 2017, 152, S991.	1.3	0