
## Norman M White

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4605695/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                 | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | A triple dissociation of memory systems: Hippocampus, amygdala, and dorsal striatum Behavioral<br>Neuroscience, 1993, 107, 3-22.                                                        | 1.2 | 1,130     |
| 2  | Multiple Parallel Memory Systems in the Brain of the Rat. Neurobiology of Learning and Memory, 2002, 77, 125-184.                                                                       | 1.9 | 809       |
| 3  | Parallel information processing in the water maze: Evidence for independent memory systems involving dorsal striatum and hippocampus. Behavioral and Neural Biology, 1994, 61, 260-270. | 2.2 | 681       |
| 4  | Dissociation of hippocampus and caudate nucleus memory systems by posttraining intracerebral injection of dopamine agonists Behavioral Neuroscience, 1991, 105, 295-306.                | 1.2 | 403       |
| 5  | Parallel Information Processing in the Dorsal Striatum: Relation to Hippocampal Function. Journal of Neuroscience, 1999, 19, 2789-2798.                                                 | 3.6 | 364       |
| 6  | A triple dissociation of memory systems: Hippocampus, amygdala, and dorsal striatum Behavioral<br>Neuroscience, 2013, 127, 835-853.                                                     | 1.2 | 358       |
| 7  | Addictive drugs as reinforcers: multiple partial actions on memory systems. Addiction, 1996, 91, 921-950.                                                                               | 3.3 | 313       |
| 8  | Dopamine D3 Receptor Mutant Mice Exhibit Increased Behavioral Sensitivity to Concurrent<br>Stimulation of D1 and D2 Receptors. Neuron, 1997, 19, 837-848.                               | 8.1 | 306       |
| 9  | Conditioned place preference from intra-accumbens but not intra-caudate amphetamine injections. Life<br>Sciences, 1983, 33, 2551-2557.                                                  | 4.3 | 254       |
| 10 | Mnemonic functions of the basal ganglia. Current Opinion in Neurobiology, 1997, 7, 164-169.                                                                                             | 4.2 | 222       |
| 11 | Anatomical disassociation of amphetamine's rewarding and aversive effects: An intracranial microinjection study. Psychopharmacology, 1986, 89, 340-6.                                   | 3.1 | 202       |
| 12 | Hippocampal and nonhippocampal contributions to place learning in rats Behavioral Neuroscience, 1995, 109, 579-593.                                                                     | 1.2 | 201       |
| 13 | Reward or reinforcement: What's the difference?. Neuroscience and Biobehavioral Reviews, 1989, 13, 181-186.                                                                             | 6.1 | 168       |
| 14 | The amphetamine conditioned place preference: differential involvement of dopamine receptor subtypes and two dopaminergic terminal areas. Brain Research, 1991, 552, 141-152.           | 2.2 | 149       |
| 15 | Place conditioning with dopamine D1 and D2 agonists injected peripherally or into nucleus accumbens. Psychopharmacology, 1991, 103, 271-276.                                            | 3.1 | 140       |
| 16 | The reinforcing action of morphine and its paradoxical side effect. Psychopharmacology, 1977, 52, 63-66.                                                                                | 3.1 | 139       |
| 17 | Memory improvement by glucose, fructose, and two glucose analogs: A possible effect on peripheral glucose transport. Behavioral and Neural Biology, 1987, 48, 104-127.                  | 2.2 | 139       |
| 18 | Dissociation of memory systems: The story unfolds Behavioral Neuroscience, 2013, 127, 813-834.                                                                                          | 1.2 | 138       |

| #  | Article                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Contingent and non-contingent actions of sucrose and saccharin reinforcers: Effects on taste preference and memory. Physiology and Behavior, 1984, 32, 195-203.                                                           | 2.1 | 137       |
| 20 | The conditioned place preference is affected by two independent reinforcement processes.<br>Pharmacology Biochemistry and Behavior, 1985, 23, 37-42.                                                                      | 2.9 | 134       |
| 21 | Memory facilitation produced by dopamine agonists: Role of receptor subtype and mnemonic requirements. Pharmacology Biochemistry and Behavior, 1989, 33, 511-518.                                                         | 2.9 | 134       |
| 22 | Addictive drugs as reinforcers: multiple partial actions on memory systems. Addiction, 1996, 91, 921-950.                                                                                                                 | 3.3 | 132       |
| 23 | Control of sensorimotor function by dopaminergic nigrostriatal neurons: Influence on eating and drinking. Neuroscience and Biobehavioral Reviews, 1986, 10, 15-36.                                                        | 6.1 | 125       |
| 24 | Some highlights of research on the effects of caudate nucleus lesions over the past 200 years.<br>Behavioural Brain Research, 2009, 199, 3-23.                                                                            | 2.2 | 115       |
| 25 | Impaired Preference Conditioning after Anterior Temporal Lobe Resection in Humans. Journal of Neuroscience, 2000, 20, 2649-2656.                                                                                          | 3.6 | 104       |
| 26 | A functional hypothesis concerning the striatal matrix and patches: Mediation of Sî—,R memory and reward. Life Sciences, 1989, 45, 1943-1957.                                                                             | 4.3 | 97        |
| 27 | Lesions of the caudate nucleus selectively impair "reference memory―acquisition in the radial maze.<br>Behavioral and Neural Biology, 1990, 53, 39-50.                                                                    | 2.2 | 96        |
| 28 | Information acquired by the hippocampus interferes with acquisition of the amygdala-based conditioned-cue preference in the rat. Hippocampus, 1995, 5, 189-197.                                                           | 1.9 | 95        |
| 29 | Systematic comparison of the effects of hippocampal and fornix-fimbria lesions on acquisition of three configural discriminations. , 1997, 7, 371-388.                                                                    |     | 86        |
| 30 | Localized intracaudate dopamine D2 receptor activation during the post-training period improves memory for visual or olfactory conditioned emotional responses in rats. Behavioral and Neural Biology, 1991, 55, 255-269. | 2.2 | 84        |
| 31 | Dissociation of visual and olfactory conditioning in the neostriatum of rats. Behavioural Brain<br>Research, 1989, 32, 31-42.                                                                                             | 2.2 | 76        |
| 32 | Effects of systemic and intracranial amphetamine injections on behavior in the open field: A detailed analysis. Pharmacology Biochemistry and Behavior, 1987, 27, 113-122.                                                | 2.9 | 74        |
| 33 | Post-training injection of the acetylcholine M2 receptor antagonist AF-DX 116 improves memory. Brain<br>Research, 1990, 524, 72-76.                                                                                       | 2.2 | 73        |
| 34 | Performance effects with repeated-response measures during pimozide-produced dopamine receptor blockade. Pharmacology Biochemistry and Behavior, 1979, 11, 557-561.                                                       | 2.9 | 70        |
| 35 | The relationship between stereotypy and memory improvement produced by amphetamine.<br>Psychopharmacology, 1984, 82, 203-209.                                                                                             | 3.1 | 64        |
| 36 | The reserpine-sensitive dopamine pool mediates (+)-amphetamine-conditioned reward in the place preference paradigm. Brain Research, 1990, 510, 33-42.                                                                     | 2.2 | 63        |

| #  | Article                                                                                                                                                                                   | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Mnemonic functions of dorsal striatum and hippocampus in aversive conditioning. Behavioural Brain<br>Research, 2003, 142, 99-107.                                                         | 2.2 | 59        |
| 38 | The ventral pallidum area is involved in the acquisition but not expression of the amphetamine conditioned place preference. Neuroscience Letters, 1993, 156, 9-12.                       | 2.1 | 58        |
| 39 | Effect of nigrostriatal dopamine depletion on the post-training, memory-improving action of amphetamine. Life Sciences, 1988, 43, 7-12.                                                   | 4.3 | 54        |
| 40 | Memory enhancement by post-training peripheral administration of low doses of dopamine agonists:<br>Possible autoreceptor effect. Behavioral and Neural Biology, 1993, 59, 230-241.       | 2.2 | 54        |
| 41 | Relationship between amygdala and hypothalamus in the control of eating behavior. Physiology and Behavior, 1969, 4, 199-205.                                                              | 2.1 | 52        |
| 42 | Conditioned Memory Modulation, Freezing, and Avoidance as Measures of Amygdala-Mediated<br>Conditioned Fear. Neurobiology of Learning and Memory, 2002, 77, 250-275.                      | 1.9 | 47        |
| 43 | Contributions of the hippocampus, amygdala, and dorsal striatum to the response elicited by reward reduction Behavioral Neuroscience, 1998, 112, 812-826.                                 | 1.2 | 46        |
| 44 | Strength-duration analysis of the organization of reinforcement pathways in the medial forebrain bundle of rats. Brain Research, 1976, 110, 575-591.                                      | 2.2 | 45        |
| 45 | The role of stimulus ambiguity and movement in spatial navigation: A multiple memory systems analysis of location discrimination. Neurobiology of Learning and Memory, 2004, 82, 216-229. | 1.9 | 42        |
| 46 | Effect of posttraining injections of glucose on acquisition of two appetitive learning tasks.<br>Cognitive, Affective and Behavioral Neuroscience, 1990, 18, 282-286.                     | 1.3 | 42        |
| 47 | Effects of catecholamine manipulations on three different self-stimulation behaviors. Pharmacology<br>Biochemistry and Behavior, 1978, 9, 603-608.                                        | 2.9 | 40        |
| 48 | Amygdala c-Fos induction corresponds to unconditioned and conditioned aversive stimuli but not to freezing. Behavioural Brain Research, 2003, 152, 109-20.                                | 2.2 | 34        |
| 49 | Pimozide attenuates conditioned taste preferences induced by self-stimulation in rats. Pharmacology<br>Biochemistry and Behavior, 1981, 15, 915-919.                                      | 2.9 | 33        |
| 50 | Conditioned Preference in Humans: A Novel Experimental Approach. Learning and Motivation, 1999, 30, 250-264.                                                                              | 1.2 | 33        |
| 51 | Learning the morphine conditioned cue preference: Cue configuration determines effects of lesions.<br>Pharmacology Biochemistry and Behavior, 2005, 81, 786-796.                          | 2.9 | 33        |
| 52 | Inactivation of the dorsal hippocampus does not affect learning during exploration of a novel environment. Hippocampus, 2005, 15, 1085-1093.                                              | 1.9 | 32        |
| 53 | Conditioned stereotypy: Behavioral specification of the UCS and pharmacological investigation of the neural change. Pharmacology Biochemistry and Behavior, 1989, 32, 249-258.            | 2.9 | 30        |
| 54 | Effects of Fimbria-Fornix, Hippocampus, and Amygdala Lesions on Discrimination Between Proximal<br>Locations Behavioral Neuroscience, 2004, 118, 770-784.                                 | 1.2 | 30        |

| #  | Article                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Effects of morphine on one-trial appetitive learning. Life Sciences, 1978, 23, 1967-1971.                                                                            | 4.3 | 28        |
| 56 | Contributions of dopamine terminal areas to amphetamine-induced anorexia and adipsia.<br>Pharmacology Biochemistry and Behavior, 1986, 25, 17-22.                    | 2.9 | 28        |
| 57 | Amphetamine conditioned cue preference and the neurobiology of drug-seeking. Seminars in Neuroscience, 1993, 5, 329-336.                                             | 2.2 | 28        |
| 58 | Effect of pimozide on the improvement in learning produced by self-stimulation and by water reinforcement. Pharmacology Biochemistry and Behavior, 1978, 8, 565-571. | 2.9 | 27        |
| 59 | Dorsal hippocampal function in unreinforced spatial learning. Hippocampus, 2000, 10, 226-235.                                                                        | 1.9 | 27        |
| 60 | Operationalizing and Measuring the Organizing Influence of Drugs on Behavior. , 1987, , 591-617.                                                                     |     | 26        |
| 61 | The effect of post-training hypothalamic self-stimulation on sensory preconditioning in rats<br>Canadian Journal of Psychology, 1982, 36, 57-66.                     | 0.8 | 25        |
| 62 | Amygdala Inactivation Blocks Expression of Conditioned Memory Modulation and the Promotion of Avoidance and Freezing Behavioral Neuroscience, 2004, 118, 24-35.      | 1.2 | 25        |
| 63 | Dorsal hippocampus function in learning and expressing a spatial discrimination. Learning and Memory, 2006, 13, 119-122.                                             | 1.3 | 23        |
| 64 | 6-Hydroxydopamine lesions of the olfactory tubercle do not alter (+)-amphetamine-conditioned place preference. Behavioural Brain Research, 1990, 36, 185-188.        | 2.2 | 22        |
| 65 | Roles of movement and temporal factors in spatial learning. Hippocampus, 1997, 7, 501-510.                                                                           | 1.9 | 22        |
| 66 | Intra-Amygdala Muscimol Injections Impair Freezing and Place Avoidance in Aversive Contextual Conditioning. Learning and Memory, 2004, 11, 436-446.                  | 1.3 | 22        |
| 67 | Perseveration by rats with amygdaloid lesions Journal of Comparative and Physiological Psychology, 1971, 77, 416-426.                                                | 1.8 | 21        |
| 68 | Effects of post-training heroin and d-amphetamine on consolidation of win-stay learning and fear conditioning. Journal of Psychopharmacology, 2013, 27, 292-301.     | 4.0 | 20        |
| 69 | Unreinforced spatial (latent) learning is mediated by a circuit that includes dorsal entorhinal cortex and fimbria fornix. Hippocampus, 2007, 17, 586-594.           | 1.9 | 19        |
| 70 | Response involvement in brain stimulation reward. Physiology and Behavior, 1981, 27, 641-647.                                                                        | 2.1 | 17        |
| 71 | Effects of adrenal demedullation on the conditioned emotional response and on the memory improving action of glucose Behavioral Neuroscience, 1988, 102, 499-503.    | 1.2 | 17        |
| 72 | Cooperation and competition between the dorsal hippocampus and lateral amygdala in spatial discrimination learning. Hippocampus, 2006, 16, 577-585.                  | 1.9 | 17        |

| #  | Article                                                                                                                                                                  | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Effects of lesions of various medial forebrain bundle components on lateral hypothalamic self-stimulation. Brain Research, 1977, 133, 45-63.                             | 2.2 | 16        |
| 74 | Effect of posttraining exposure to an aversive stimulus on retention. Physiological Psychology, 1984, 12, 233-236.                                                       | 0.8 | 16        |
| 75 | Involuntary, unreinforced (pure) spatial learning is impaired by fimbria-fornix but not by dorsal<br>hippocampus lesions. Hippocampus, 2003, 13, 324-333.                | 1.9 | 16        |
| 76 | Exploration evoked by electrical stimulation of the amygdala of rats. Physiological Psychology, 1978, 6, 229-235.                                                        | 0.8 | 15        |
| 77 | Lithium increases selective attention in rats. Pharmacology Biochemistry and Behavior, 1981, 15, 81-88.                                                                  | 2.9 | 15        |
| 78 | Algebraic summation of the affective properties of a rewarding and an aversive stimulus in the rat.<br>Physiology and Behavior, 1982, 28, 873-877.                       | 2.1 | 15        |
| 79 | A latent cue preference based on sodium depletion in rats. Learning and Memory, 2005, 12, 549-552.                                                                       | 1.3 | 15        |
| 80 | Parallel learning in an autoshaping paradigm Behavioral Neuroscience, 2016, 130, 376-392.                                                                                | 1.2 | 15        |
| 81 | Effects of anterior medial forebrain bundle lesions on self-stimulation with two different operant responses. Behavioral Biology, 1975, 14, 221-230.                     | 2.2 | 14        |
| 82 | Pipradrol conditioned place preference is blocked by SCH23390. Pharmacology Biochemistry and Behavior, 1992, 43, 377-380.                                                | 2.9 | 14        |
| 83 | Temporary inactivation of the dorsal entorhinal cortex impairs acquisition and retrieval of spatial information. Neurobiology of Learning and Memory, 2010, 93, 203-207. | 1.9 | 14        |
| 84 | Enhancement of feeding produced by stimulation of the ventromedial hypothalamus Journal of<br>Comparative and Physiological Psychology, 1974, 86, 414-419.               | 1.8 | 13        |
| 85 | Roles of learning and motivation in preference behavior: Mediation by entorhinal cortex, dorsal and ventral hippocampus. Hippocampus, 2007, 17, 147-160.                 | 1.9 | 13        |
| 86 | Self-stimulation and suppression of feeding observed at the same site in the amygdala. Physiology and Behavior, 1973, 10, 215-219.                                       | 2.1 | 12        |
| 87 | Effects of catecholamine manipulations on three different self-stimulation behaviors. Pharmacology<br>Biochemistry and Behavior, 1978, 9, 273-278.                       | 2.9 | 12        |
| 88 | Facilitation of retention by self-stimulation and by experimenter-administered stimulation Canadian<br>Journal of Psychology, 1978, 32, 116-123.                         | 0.8 | 12        |
| 89 | Cognitive Enhancement: An Everyday Event?. International Journal of Psychology, 1998, 33, 95-105.                                                                        | 2.8 | 12        |
| 90 | Effects of septal lesions on responding for delayed brain stimulation reinforcement. Brain Research, 1974, 65, 185-193.                                                  | 2.2 | 11        |

| #   | Article                                                                                                                                                                                                  | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Effect of glucose on amphetamine-induced motor behavior. Life Sciences, 1986, 38, 2255-2262.                                                                                                             | 4.3 | 11        |
| 92  | Parallel processing of information about location in the amygdala, entorhinal cortex and hippocampus. Hippocampus, 2013, 23, 1075-1083.                                                                  | 1.9 | 9         |
| 93  | Posttraining self-stimulation and memory: A study of some parameters. Physiological Psychology, 1982, 10, 343-349.                                                                                       | 0.8 | 8         |
| 94  | Reward. Frontiers in Neuroscience, 2011, , 45-60.                                                                                                                                                        | 0.0 | 8         |
| 95  | The caudate nucleus and acquisition of win-shift radial-maze behavior: Effect of exposure to the reinforcer during maze adaptation. Cognitive, Affective and Behavioral Neuroscience, 1992, 20, 127-132. | 1.3 | 8         |
| 96  | Ultrasonic vocalization ratios reflect the influence of motivational state and amygdala lesions on different types of taste avoidance learning. Behavioural Brain Research, 2011, 217, 88-98.            | 2.2 | 7         |
| 97  | Effects of NMDA receptor blockade on behaviors differentially affected by fimbria/fornix and amygdala lesions. Cognitive, Affective and Behavioral Neuroscience, 1997, 25, 109-117.                      | 1.3 | 7         |
| 98  | Effects of lesions of the amygdala, pyriform cortex, and stria terminalis on two types of exploration by rats. Physiological Psychology, 1978, 6, 319-324.                                               | 0.8 | 6         |
| 99  | Neural circuits mediating latent learning and conditioning for salt in the rat. Neurobiology of Learning and Memory, 2006, 86, 91-99.                                                                    | 1.9 | 5         |
| 100 | Learning not to respond: Role of the hippocampus in withholding responses during omission training.<br>Behavioural Brain Research, 2017, 318, 61-70.                                                     | 2.2 | 5         |
| 101 | How independent are parallel memory systems? A theoretical comment on Gibson and Shettleworth (2005) Behavioral Neuroscience, 2005, 119, 1158-1164.                                                      | 1.2 | 3         |
| 102 | Pharmacological Approaches to the Study of Learning and Memory. , 1998, , 143-176.                                                                                                                       |     | 3         |
| 103 | Memory enhancement produced by post-training exposure to sucrose-conditioned cues.<br>F1000Research, 2013, 2, 22.                                                                                        | 1.6 | 3         |
| 104 | Effect of Muscimol Inactivation of the Basolateral or Central Amygdala on Shock onditioned<br>Responses. Annals of the New York Academy of Sciences, 2003, 985, 525-527.                                 | 3.8 | 2         |
| 105 | Lesions of basolateral and central amygdala differentiate conditioned cue preference learning with and without unreinforced preexposure Behavioral Neuroscience, 2011, 125, 84-92.                       | 1.2 | 2         |
| 106 | Memory or learned association?. Trends in Neurosciences, 1979, 2, 244.                                                                                                                                   | 8.6 | 1         |
| 107 | Emotional Memory:Conceptual and Methodological Issues. , 1995, , 93-100.                                                                                                                                 |     | 1         |
| 108 | Beyond reward and dopamine to multiple causes and individual differences. Addiction, 1996, 91, 960-965.                                                                                                  | 3.3 | 0         |

7

| #   | Article                                                                                | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------|-----|-----------|
| 109 | Multiple Memory Systems in Humans and Rodents â~†. , 2017, , .                         |     | ο         |
| 110 | Peter M. Milner, 1919–2018. Journal of Psychiatry and Neuroscience, 2018, 43, 428-429. | 2.4 | 0         |