Zhenghong Bao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4605439/publications.pdf

Version: 2024-02-01

257450 377865 1,663 33 24 34 citations g-index h-index papers 35 35 35 1877 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Surface Reconstructions of Metal Oxides and the Consequences on Catalytic Chemistry. ACS Catalysis, 2019, 9, 5692-5707.	11.2	127
2	CuFe, CuCo and CuNi nanoparticles as catalysts for higher alcohol synthesis from syngas: a comparative study. Catalysis Science and Technology, 2013, 3, 1591.	4.1	118
3	Catalytic Pyrolysis of Biomass and Polymer Wastes. Catalysts, 2018, 8, 659.	3.5	113
4	Advances in bifunctional catalysis for higher alcohol synthesis from syngas. Chinese Journal of Catalysis, 2013, 34, 116-129.	14.0	111
5	Confined Ni-In intermetallic alloy nanocatalyst with excellent coking resistance for methane dry reforming. Journal of Energy Chemistry, 2022, 65, 34-47.	12.9	96
6	Highly active and stable Ni-based bimodal pore catalyst for dry reforming of methane. Applied Catalysis A: General, 2015, 491, 116-126.	4.3	94
7	Sandwiched SiO2@Ni@ZrO2 as a coke resistant nanocatalyst for dry reforming of methane. Applied Catalysis B: Environmental, 2019, 254, 612-623.	20.2	92
8	Radical Chemistry and Reaction Mechanisms of Propane Oxidative Dehydrogenation over Hexagonal Boron Nitride Catalysts. Angewandte Chemie - International Edition, 2020, 59, 8042-8046.	13.8	83
9	Elucidating the Copper–HÃǥg Iron Carbide Synergistic Interactions for Selective CO Hydrogenation to Higher Alcohols. ACS Catalysis, 2017, 7, 5500-5512.	11.2	82
10	Structural evolution of CuFe bimetallic nanoparticles for higher alcohol synthesis. Journal of Molecular Catalysis A, 2013, 378, 319-325.	4.8	68
11	High Selectivity Higher Alcohols Synthesis from Syngas over Threeâ€Dimensionally Ordered Macroporous Cuâ€Fe Catalysts. ChemCatChem, 2014, 6, 473-478.	3.7	64
12	Unsupported CuFe bimetallic nanoparticles for higher alcohol synthesis via syngas. Catalysis Communications, 2013, 40, 154-157.	3.3	52
13	Effects of Sodium and Tungsten Promoters on Mg ₆ MnO ₈ -Based Coreâ€"Shell Redox Catalysts for Chemical Loopingâ€"Oxidative Dehydrogenation of Ethane. ACS Catalysis, 2019, 9, 3174-3186.	11.2	52
14	<i>In Situ</i> Strong Metal–Support Interaction (SMSI) Affects Catalytic Alcohol Conversion. ACS Catalysis, 2021, 11, 1938-1945.	11.2	50
15	Unlocking the Catalytic Potential of TiO ₂ -Supported Pt Single Atoms for the Reverse Water–Gas Shift Reaction by Altering Their Chemical Environment. Jacs Au, 2021, 1, 977-986.	7.9	46
16	The water-gas shift reaction for hydrogen production from coke oven gas over Cu/ZnO/Al 2 O 3 catalyst. Catalysis Today, 2016, 263, 46-51.	4.4	41
17	Impact of Surface Composition of SrTiO ₃ Catalysts for Oxidative Coupling of Methane. ChemCatChem, 2019, 11, 2107-2117.	3.7	41
18	Biogas reforming of carbon dioxide to syngas production over Ni-Mg-Al catalysts. Molecular Catalysis, 2017, 436, 248-258.	2.0	39

#	Article	IF	CITATIONS
19	A Review on the Impact of SO ₂ on the Oxidation of NO, Hydrocarbons, and CO in Diesel Emission Control Catalysis. ACS Catalysis, 2021, 11, 12446-12468.	11.2	36
20	Higher alcohol synthesis over Cu-Fe composite oxides with high selectivity to C2+OH. Journal of Energy Chemistry, 2013, 22, 107-113.	12.9	35
21	Effect of Fe/Cu ratio on the activity of Fe–Al–Cu catalysts for water gas shift reaction under hydrogen-rich atmosphere. International Journal of Hydrogen Energy, 2012, 37, 951-955.	7.1	30
22	A Principle for Highly Active Metal Oxide Catalysts via NaCl-Based Solid Solution. CheM, 2020, 6, 1723-1741.	11.7	30
23	The synergistic effect of the structural precursors of Cu/ZnO/Al2O3 catalysts for water–gas shift reaction. Catalysis Communications, 2011, 12, 505-509.	3.3	29
24	Construction of 2D BiVO ₄ â^'CdSâ^'Ti ₃ C ₂ T _x Heterostructures for Enhanced Photoâ€redox Activities. ChemCatChem, 2020, 12, 3496-3503.	3.7	25
25	The interplay between surface facet and reconstruction on isopropanol conversion over SrTiO3 nanocrystals. Journal of Catalysis, 2020, 384, 49-60.	6.2	19
26	Alcohol-Induced Low-Temperature Blockage of Supported-Metal Catalysts for Enhanced Catalysis. ACS Catalysis, 2020, 10, 8515-8523.	11.2	18
27	Catalytic Cracking of Inedible Oils for the Production of Drop-In Biofuels over a SO ₄ ^{2–} /TiO ₂ -ZrO ₂ Catalyst. Energy & C	5.1	16
28	Kinetic study of methane reforming with carbon dioxide over NiCeMgAl bimodal pore catalyst. AICHE Journal, 2017, 63, 2019-2029.	3.6	15
29	Mesoporous Ni(OH) ₂ /CeNi _{<i>x</i>} O _{<i>y</i>} Composites Derived Ni/CeNi _{<i>x</i>} Catalysts for Dry Reforming of Methane. ChemCatChem, 2018, 10, 250-258.	3.7	15
30	Radical Chemistry and Reaction Mechanisms of Propane Oxidative Dehydrogenation over Hexagonal Boron Nitride Catalysts. Angewandte Chemie, 2020, 132, 8119-8123.	2.0	11
31	Ammonia-Assisted Light Alkane Anti-coke Reforming on Isolated ReO _{<i>x</i>} Sites in Zeolite. ACS Catalysis, 2022, 12, 3165-3172.	11.2	6
32	Innovative cycling reaction mechanisms of CO2 absorption in amino acid salt solvents. Chemical Engineering Journal Advances, 2022, 10, 100250.	5.2	5
33	Titelbild: Radical Chemistry and Reaction Mechanisms of Propane Oxidative Dehydrogenation over Hexagonal Boron Nitride Catalysts (Angew. Chem. 21/2020). Angewandte Chemie, 2020, 132, 8045-8045.	2.0	0