Stefan L Oliver

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4604854/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Molecular mechanisms of varicella zoster virus pathogenesis. Nature Reviews Microbiology, 2014, 12, 197-210.	28.6	319
2	Varicella-Zoster Virus T Cell Tropism and the Pathogenesis of Skin Infection. Current Topics in Microbiology and Immunology, 2010, 342, 189-209.	1.1	75
3	Disruption of PML Nuclear Bodies Is Mediated by ORF61 SUMO-Interacting Motifs and Required for Varicella-Zoster Virus Pathogenesis in Skin. PLoS Pathogens, 2011, 7, e1002157.	4.7	60
4	Mutagenesis of Varicella-Zoster Virus Glycoprotein B: Putative Fusion Loop Residues Are Essential for Viral Replication, and the Furin Cleavage Motif Contributes to Pathogenesis in Skin Tissue In Vivo. Journal of Virology, 2009, 83, 7495-7506.	3.4	56
5	Structure–function analysis of varicella-zoster virus glycoprotein H identifies domain-specific roles for fusion and skin tropism. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 18412-18417.	7.1	44
6	A site of varicella-zoster virus vulnerability identified by structural studies of neutralizing antibodies bound to the glycoprotein complex gHgL. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 6056-6061.	7.1	44
7	Genotype 1 and Genotype 2 Bovine Noroviruses Are Antigenically Distinct but Share a Cross-Reactive Epitope with Human Noroviruses. Journal of Clinical Microbiology, 2006, 44, 992-998.	3.9	43
8	Varicella-Zoster Virus Glycoproteins: Entry, Replication, and Pathogenesis. Current Clinical Microbiology Reports, 2016, 3, 204-215.	3.4	39
9	An immunoreceptor tyrosine-based inhibition motif in varicella-zoster virus glycoprotein B regulates cell fusion and skin pathogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 1911-1916.	7.1	38
10	The Cytoplasmic Domain of Varicella-Zoster Virus Glycoprotein H Regulates Syncytia Formation and Skin Pathogenesis. PLoS Pathogens, 2014, 10, e1004173.	4.7	37
11	Target highlights in <scp>CASP14</scp> : Analysis of models by structure providers. Proteins: Structure, Function and Bioinformatics, 2021, 89, 1647-1672.	2.6	27
12	Development of recombinant varicella-zoster viruses expressing luciferase fusion proteins for live in vivo imaging in human skin and dorsal root ganglia xenografts. Journal of Virological Methods, 2008, 154, 182-193.	2.1	25
13	Anti-Glycoprotein H Antibody Impairs the Pathogenicity of Varicella-Zoster Virus in Skin Xenografts in the SCID Mouse Model. Journal of Virology, 2010, 84, 141-152.	3.4	25
14	Role for the αV Integrin Subunit in Varicella-Zoster Virus-Mediated Fusion and Infection. Journal of Virology, 2016, 90, 7567-7578.	3.4	23
15	A glycoprotein B-neutralizing antibody structure at 2.8 à uncovers a critical domain for herpesvirus fusion initiation. Nature Communications, 2020, 11, 4141.	12.8	23
16	Envelope protein variability among HBVâ€Infected asymptomatic carriers and immunized children with breakthrough infections. Journal of Medical Virology, 2008, 80, 1537-1546.	5.0	20
17	The Glycoprotein B Cytoplasmic Domain Lysine Cluster Is Critical for Varicella-Zoster Virus Cell-Cell Fusion Regulation and Infection. Journal of Virology, 2017, 91, .	3.4	20
18	Mutagenesis of Varicella-Zoster Virus Glycoprotein I (gI) Identifies a Cysteine Residue Critical for gE/gI Heterodimer Formation, gI Structure, and Virulence in Skin Cells. Journal of Virology, 2011, 85, 4095-4110.	3.4	17

STEFAN L OLIVER

#	Article	IF	CITATIONS
19	Varicella-zoster virus: molecular controls of cell fusion-dependent pathogenesis. Biochemical Society Transactions, 2020, 48, 2415-2435.	3.4	16
20	Dysregulated Glycoprotein B-Mediated Cell-Cell Fusion Disrupts Varicella-Zoster Virus and Host Gene Transcription during Infection. Journal of Virology, 2017, 91, .	3.4	15
21	ORF11 Protein Interacts with the ORF9 Essential Tegument Protein in Varicella-Zoster Virus Infection. Journal of Virology, 2013, 87, 5106-5117.	3.4	13
22	The N-terminus of varicella-zoster virus glycoprotein B has a functional role in fusion. PLoS Pathogens, 2021, 17, e1008961.	4.7	12
23	Analysis of the Functions of Glycoproteins E and I and Their Promoters During VZV Replication In Vitro and in Skin and T-Cell Xenografts in the SCID Mouse Model of VZV Pathogenesis. Current Topics in Microbiology and Immunology, 2010, 342, 129-146.	1.1	9
24	Heterogeneity in the capsid protein of bovine enteric caliciviruses belonging to a new genus. Virology, 2009, 387, 109-116.	2.4	7
25	Calcineurin phosphatase activity regulates Varicella-Zoster Virus induced cell-cell fusion. PLoS Pathogens, 2020, 16, e1009022.	4.7	5
26	HIV-1 inhibitory properties of eCD4-Igmim2 determined using an Env-mediated membrane fusion assay. PLoS ONE, 2018, 13, e0206365.	2.5	0
27	The Structures and Functions of VZV Glycoproteins. Current Topics in Microbiology and Immunology, 2021, , .	1.1	0
28	The N-terminus of varicella-zoster virus glycoprotein B has a functional role in fusion. , 2021, 17, e1008961.		0
29	The N-terminus of varicella-zoster virus glycoprotein B has a functional role in fusion. , 2021, 17, e1008961.		0
30	The N-terminus of varicella-zoster virus glycoprotein B has a functional role in fusion. , 2021, 17, e1008961.		0
31	The N-terminus of varicella-zoster virus glycoprotein B has a functional role in fusion. , 2021, 17, e1008961.		0
32	Calcineurin phosphatase activity regulates Varicella-Zoster Virus induced cell-cell fusion. , 2020, 16, e1009022.		0
33	Calcineurin phosphatase activity regulates Varicella-Zoster Virus induced cell-cell fusion. , 2020, 16, e1009022.		0
34	Calcineurin phosphatase activity regulates Varicella-Zoster Virus induced cell-cell fusion. , 2020, 16, e1009022.		0
35	Calcineurin phosphatase activity regulates Varicella-Zoster Virus induced cell-cell fusion. , 2020, 16, e1009022.		0